A cantilever is a beam whose
(a) Both ends are supported either on rollers or hinges
(b) One end is fixed and other end is free
(c) Both ends are fixed
(d) Whose both or one of the end has overhang

1 Answer

Answer :

b) One end is fixed and other end is free

Related questions

Description : A beam of length L supported on two intermediate rollers carries a uniformly distributed load on its entire length. If sagging B.M. and hogging B.M. of the beam are equal, the length of each overhang, is (A) 0.107 L (B) 0.207 L (C) 0.307 L(D) 0.407 L

Last Answer : (B) 0.207 L

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum slope in a cantilever beam with W at the free end will be a.at the free end. b. at the centre c.at the fixed end. d.None.

Last Answer : a.at the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a. at the free end. b.at the fixed end. c.at the centre d.None.

Last Answer : a. at the free end.

Description : In case of a cantilever beam, shear force at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (a) One end is fixed and other end is hinged (b) ... (c) One end is fixed and the other end entirely free (d) Both the ends are fixed

Last Answer : (d) Both the ends are fixed

Description : If continuous beam is overhanging then overhanging acts as a a.propped cantilever b.cantilever c.supported cantilever d.extended supported beam

Last Answer : b.cantilever

Description : Which of the following are statically determinate beams? (a) Only simply supported beams (b) Cantilever, overhanging and simply supported (c) Fixed beams (d) Continuous beams

Last Answer : (b) Cantilever, overhanging and simply supported

Description : A long column with fixed ends can carry load as compared to cantilever column (a) 4 times (b) 8 times (c) 16 times (d) None

Last Answer : (c) 16 times

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : .In a free moment diagram support assumption is a. Simply supported ends b.free free ends c. fixed ends d.hinged ends

Last Answer : a. Simply supported ends

Description : .Maximum slope in a cantilever beam with a Moment M at the free end will be a. 3ML/EI. b.2ML/EI. C. ML/EI. d. None.

Last Answer : C. ML/EI.

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : In cantilever beam the slope and deflection at the free end is ---------. a.zero b.maximum c.minimum d.none of above.

Last Answer : b.maximum

Description : In case of a cantilever beam, bending moment at the free end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : c) Zero

Description : A cantilever beam of span 3m carries a point load 100 N at the free end. The maximum B.M in the beam will be (a) 100 N-m (b) 300 N-m (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N-m

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : A column with maximum equivalent length has (a) both ends hinged (b) both ends fixed (c) one end fixed and the other end hinged (d) one end fixed and the other end free

Last Answer : (d) one end fixed and the other end free

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : A continuous beam is simply supported on its one or both the end supports the fixing moment on simply supported beam end is a. zero b. infinite c. neglected in calculation d. multiplied by a cross over factor in calculation

Last Answer : a. zero

Description : The Point of contraflexure occurs in case of (a) Cantilever beams (b) Simply supported beams (c) Over hanging beams (d) All types of beams

Last Answer : c) Over hanging beams

Description : A simply supported beam which carries a uniformly distributed load has two equal overhangs. To  have maximum B.M. produced in the beam least possible, the ratio of the length of the overhang  to the total length of the beam, is  (A) 0.207  (B) 0.307  (C) 0.407  (D) 0.508 

Last Answer : (A) 0.207 

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : The ratio of the maximum deflections of a simply supported beam with a central load W and of a  cantilever of same length and with a load W at its free end, is  (A) 1/8  (B) 1/10  (C) 1/12  (D) 1/16 

Last Answer : (D) 1/16 

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : For a beam having fixed ends, the unknown element of the reactions, is  (A) Horizontal components at either end  (B) Vertical components at either end  (C) Horizontal component at one end and vertical component at the other  (D) Horizontal and vertical components at both the ends 

Last Answer : (D) Horizontal and vertical components at both the ends 

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. wl3/9EI b. wl3/6EI c. wl3/3EI d. None.

Last Answer : b. wl3/6EI

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : In case of a cantilever beam having UDL, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (b) Parabolic

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : .Freely supported beams are assumed to be fixed beams if subjected to a. end loads which makes displacement zero b. end moments c. end couples which makes slope zero d. moments

Last Answer : c. end couples which makes slope zero