A vertical column has two moments of inertia (i.e. Ixx and Iyy ). The column will tend to  buckle in the direction of the
(a) axis of load
(b) perpendicular to the axis of load
(c) maximum moment of inertia
(d) minimum moment of inertia

1 Answer

Answer :

(d) minimum moment of inertia

Related questions

Description : A column has moment of inertia about X-X and Y-Y axis as follows IXX=4234.4 mm4 IYY=236.3 mm4 This column will buckle about (a) X-X axis (b) Y-Y axis (c) It depends upon the applied load (d) None of these

Last Answer : (b) Y-Y axis

Description : Which of the following relations is used to represent theorem of perpendicular axes? (H = Vertical axis, I = Moment of inertia and K = Radius of gyration) a. IPQ = Ixx + AH2 b. IPQ = Ixx + Ak2 c. Izz = Ixx + Iyy d. Izz + Ixx + Iyy = 0

Last Answer : c. Izz = Ixx + Iyy

Description : Which of the following laminas have same moment of inertia (Ixx = Iyy), when passed through the centroid along x-x and y-y axes? a. Circle b. Semi-circle c. Right angle triangle d. Isosceles triangle

Last Answer : a. Circle

Description : Compression members always tend to buckle in the direction of (a) Vertical axis (b) Horizontal axis (c) Minimum cross-section (d) Least radius of gyration

Last Answer : (d) Least radius of gyration

Description : For any part of a beam between two concentrated load, Bending moment diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : The slenderness ratio is the ratio of (a) Length of column to least radius of gyration (b) Moment of inertia to area of cross-section (c) Area of cross-section to moment of inertia (d) Least radius of gyration to length of the column

Last Answer : (a) Length of column to least radius of gyration

Description : A shaft is said to be in pure torsion if a. Turning moment is applied at one end and other end is free b. Turning force is applied at one end and other end is free c. Two opposite turning moments are applied to the shaft d. Combination of torsional load and bending load is applied to the shaft

Last Answer : c. Two opposite turning moments are applied to the shaft

Description : Bending stress will be least at the extreme fibres for (a) Maximum area of cross section (b) Maximum moment of inertia (c) Maximum section modulus (d) None

Last Answer : (c) Maximum section modulus

Description : 7-For any part of the beam, between two concentrated load Shear force diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : Na

Description : For any part of a beam subjected to uniformly distributed load, Shear force diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : Polar moment of inertia is a.Applicable to masses whereas moment of inertia is applicable to area only b.The moment of inertia for an area ralative to a line or axis which is out the plane of area ... The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Last Answer : e. The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Description : The moment of inertia of a thin ring about an axis perpendicular to plane of ring is a.1/3 Mr3 b.Mr2 c.Mr d.Mr3 e.1/2 Mr3

Last Answer : b. Mr2

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the Bending moment diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (d) Follows a cubic law

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : ______ is the perpendicular distance between point of application of force and axis of rotation. (1) Moment arm (2) Moment of Inertia (3) Altitude (4) Base

Last Answer : (1) Moment arm Explanation: The magnitude of the moment of force acting about a point or axis is directly proportional to the distance of the force from the point or axis.

Description : State and explain perpendicular axis theorem of moment of Inertia.

Last Answer : Perpendicular axis theorem: It states MI of a plane lamina about an axis perpendicular to the plane of lamina and passing through the centroid of the lamina is equal to the addition of the moments of ... OY are mutually perpendicular and OZ is the axis perpendicular to plane XY of the lamina.

Description : The polar moment of inertia of a hollow shaft of outer diameter (D) and inner diameter (d) is given by. (a)π/16(D3-d3) (b) π/16(D4-d4) (c) π/16(D4-d4) (d) π/16(D4-d4/d)

Last Answer : (b) π/16(D4-d4)

Description : The polar moment of inertia of a solid circular shaft of diameter (d) is (a)πd2/16 (b) πd3/32 (c) πd4/32 (d) πd4/64

Last Answer : (c) πd4/32

Description : What is the product of sectional modulus and allowable bending stress called as? a. Moment of inertia b. Moment of rigidity c. Moment of resistance d. Radius of gyration

Last Answer : c. Moment of resistance

Description : What is the moment of inertia acting on a semicircle of radius 20 mm about the asymmetrical axes? a. 125.663 x 103 mm4 b. 17600 mm4 c. 1500 mm4 d. 8800 mm4

Last Answer : b. 17600 mm4

Description : What is the moment of inertia acting on a circle of diameter 50 mm? a. 122.71 x 103 mm4 b. 306.79 x 103 mm4 c. 567.23 x 103 mm4 d. 800 x 103 mm4

Last Answer : b. 306.79 x 103 mm4

Description : What is the moment of inertia acting on a rectangle of width 15 mm and depth 40 mm about base by using theorem of parallel axes? a. 320 x 103 mm4 b. 300 x 103 mm4 c. 240 x 103 mm4 d. 80 x 103 mm

Last Answer : a. 320 x 103 mm4

Description : Moment of inertia acting on a semi-circle about symmetrical axes is given as _______ a. 1.57 r4 b. 0.055 r4 c. 0.392 r4 d. 0.11 r4

Last Answer : c. 0.392 r4

Description : The shear stress acting on the neutral axis of a beam is _____ a. maximum b. minimum c. zero d. none of the above

Last Answer : a. maximum

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : In case of a cantilever beam, bending moment at the free end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : c) Zero

Description : At the supports of a simply supported beam, bending moment will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (c) Zero

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : The slenderness ratio of a vertical column of a square cross-section of 2.5 cm sides and 300 cm length, is (a) 240 (b) 416 (c) 360 (d) 400

Last Answer : (b) 416

Description : The slenderness ratio of a vertical column of a square cross-section of 2.5 cm sides and 300 cm length, is (a) 200 (b) 240 (c) 360 (d) 416

Last Answer : (d) 416

Description : The vertical distance between the axis of the beam before and after loading at a point is called as _______ a. Deformation b. Deflection c. Slope d. None of above.

Last Answer : b. Deflection

Description : The ratio of moments of inertia of a triangular section about its base and about a centroidal axis  parallel to its base, is  (A) 1.0  (B) 1.5  (C) 2.0  (D) 3.0 

Last Answer : (D) 3.0 

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : A member subjected to couple produces rotational motion about its longitudinal axis called as ________ a. torsion b. twisting moment c. both a. and b. d. bending moment

Last Answer : c. both a. and b.

Description : When a beam is subjected to a bending moment the strain in a layer is …………the distance from the neutral axis. (a) Independent of (b) Directly proportional to (c) Inversely proportional to (d) None of these

Last Answer : (b) Directly proportional to

Description : An Athlets runs before long jump to get advantage on – (1) Inertia of motion (2) Frictional force (3) Moment of a force (4) Principle of moments

Last Answer : (1) Inertia of motion Explanation: An athlete does so to build up forward momentum so that when he jumps he already has a forward motion that would be greater than that of a jump made from standing in ... in terms of inertia of motion which is the tendency of an object to resist a change in motion.

Description : If Ix  and Iy are the moments of inertia of a section about X and Y axes, the polar moment of inertia  of the section, is  (A) (IX + IY)/2  (B) (IX - IY)/2  (C) IX + IY (D) (IX/IY)

Last Answer : (C) IX + I

Description : While using three moments equation, a fixed end of a continuous beam is replaced by an additional span of (A) Zero length (B) Infinite length (C) Zero moment of inertia (D) None of the above

Last Answer : (A) Zero length

Description : An athlete runs before long jump to get advantage on (1) Inertia of motion (2) Frictional force (3) Moment of a force (4) Principle of moments

Last Answer : Inertia of motion

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose endsare hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2, the permissible maximumcrippling load will be (a) 1.288 tonnes (b) 12.88 (c) 128.8 tonnes (d) 288.0

Last Answer : (b) 12.88

Description : The ratio of the effective length of a column and minimum radius of gyration of its cross sectionalarea, is known (a) Buckling factor (b) Slenderness ratio (c) Crippling factor (d) None of these

Last Answer : (b) Slenderness ratio