The polar moment of inertia of a solid circular shaft of diameter (d) is (a)πd2/16
(b) πd3/32
(c) πd4/32
(d) πd4/64

1 Answer

Answer :

(c) πd4/32

Related questions

Description : Maximum shear stress of a solid shaft is given by a. 16T/πd b. 16T/πd2 c. 16T/πd3 d. 16T/πd4

Last Answer : c. 16T/πd3

Description : The polar moment of inertia of a hollow shaft of outer diameter (D) and inner diameter (d) is given by. (a)π/16(D3-d3) (b) π/16(D4-d4) (c) π/16(D4-d4) (d) π/16(D4-d4/d)

Last Answer : (b) π/16(D4-d4)

Description : What is the maximum principle stress induced in a solid shaft of 40 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 150 kN.mm respectively? a. 21.69 N/mm2 b. 28.1 N/mm2 c. 50.57 N/mm2 d. 52.32 N/mm2

Last Answer : c. 50.57 N/mm2

Description : What is the maximum shear stress induced in a solid shaft of 50 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 200 kN.mm respectively? a. 9.11 N/mm2 b. 14.69 N/mm2 c. 16.22 N/mm2 d. 20.98 N/mm2

Last Answer : b. 14.69 N/mm2

Description : A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 Mpa. It is further subjected to a torque of 10 kNm. The maximum principal stress experienced on the shaft is closest to (a) 41Mpa (b) 82 Mpa (c) 164 Mpa (d) 204 Mpa

Last Answer : (b) 82 Mpa

Description : The ratio of strength of a hollow shaft to that of a solid shaft subjected to torsion if both are of the same material and of the same outer diameters, the inner diameter of hollow shaft being half of the outer diameter is a. 15/16 b. 16/15 c. 7/8 d. 8/7

Last Answer : a. 15/16

Description : The polar moment of inertia of a hollow circular section whose external diameter is 8 cm and internal diameter of 6 cm will be a.137.5 cm4 b.107 dynes c.275 cm4 d.550 cm4 e.1100 cm4

Last Answer : c. 275 cm4

Description : What is the moment of inertia acting on a circle of diameter 50 mm? a. 122.71 x 103 mm4 b. 306.79 x 103 mm4 c. 567.23 x 103 mm4 d. 800 x 103 mm4

Last Answer : b. 306.79 x 103 mm4

Description : A hollow prismatic beam of circular section is subjected to a torsional moment. The maximum shear stress occurs at (a) inner wall of cross section (b) middle of thickness (c) outer surface of shaft (d) none of these

Last Answer : (c) outer surface of shaft

Description : Calculate the shaft diameter on rigidity basis if torsional moment is 196000N-mm, length of shaft is 1000mm. Permissible angle of twist per meter is 0.5’ and take G=79300N/mm². a) None of the listed b) 41.2mm c) 35.8mm d) 38.8mm

Last Answer : b) 41.2mm

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : For a solid or a hollow shaft subject to a twisting moment T, the torsional shearing stress t at a distance r from the centre will be (a) t = Tr/J (b) t = Tr (c) t = TJ/r (d) none of these

Last Answer : (a) t = Tr/J

Description : A solid shaft has diameter 80 mm. It is subjected to a torque of 4 KNm. The maximum shear stress induced in the shaft would be (a) 75/p N/mm2 (b) 250/p N/mm2 (c) 125/p N/mm2 (d) 150/p N/mm2

Last Answer : (c) 125/p N/mm2

Description : Deflection in a close coiled helical spring is (a) 16 WR3n/Gd4 (b) 32 WR3n/Gd4 (c) 64 WR3n/Gd4 (d) None

Last Answer : (c) 64 WR3n/Gd4

Description : Which of the following relation is correct regarding free torsional vibrations of a single motor system? a) Independent of modulus of rigidity b) Independent of polar moment of inertia c) Dependent on mass moment of inertia d) Independent of length of shaft

Last Answer : c) Dependent on mass moment of inertia

Description : In a shaft shear stress intensity at a point is not (A) Directly proportional to the distance from the axis (B) Inversely proportional to the distance from the axis (C) Inversely proportional to the polar moment of inertia (D) Directly proportional to the applied torque

Last Answer : (B) Inversely proportional to the distance from the axis

Description : The maximum twisting moment a shaft can resist, is the product of the permissible shear stress and (A) Moment of inertia (B) Polar moment of inertia (C) Polar modulus (D) Modulus of rigidly

Last Answer : (C) Polar modulus

Description : The ratio of strengths of solid to hollow shafts, both having outside diameter D and hollow having inside diameter D/2, in torsion, is a.1/4 b. 1/2 c. 1/16 d. 15/16

Last Answer : d. 15/16

Description : A vertical column has two moments of inertia (i.e. Ixx and Iyy ). The column will tend to buckle in the direction of the (a) axis of load (b) perpendicular to the axis of load (c) maximum moment of inertia (d) minimum moment of inertia

Last Answer : (d) minimum moment of inertia

Description : A column has moment of inertia about X-X and Y-Y axis as follows IXX=4234.4 mm4 IYY=236.3 mm4 This column will buckle about (a) X-X axis (b) Y-Y axis (c) It depends upon the applied load (d) None of these

Last Answer : (b) Y-Y axis

Description : The slenderness ratio is the ratio of (a) Length of column to least radius of gyration (b) Moment of inertia to area of cross-section (c) Area of cross-section to moment of inertia (d) Least radius of gyration to length of the column

Last Answer : (a) Length of column to least radius of gyration

Description : Bending stress will be least at the extreme fibres for (a) Maximum area of cross section (b) Maximum moment of inertia (c) Maximum section modulus (d) None

Last Answer : (c) Maximum section modulus

Description : Which of the following laminas have same moment of inertia (Ixx = Iyy), when passed through the centroid along x-x and y-y axes? a. Circle b. Semi-circle c. Right angle triangle d. Isosceles triangle

Last Answer : a. Circle

Description : What is the product of sectional modulus and allowable bending stress called as? a. Moment of inertia b. Moment of rigidity c. Moment of resistance d. Radius of gyration

Last Answer : c. Moment of resistance

Description : What is the moment of inertia acting on a semicircle of radius 20 mm about the asymmetrical axes? a. 125.663 x 103 mm4 b. 17600 mm4 c. 1500 mm4 d. 8800 mm4

Last Answer : b. 17600 mm4

Description : Which of the following relations is used to represent theorem of perpendicular axes? (H = Vertical axis, I = Moment of inertia and K = Radius of gyration) a. IPQ = Ixx + AH2 b. IPQ = Ixx + Ak2 c. Izz = Ixx + Iyy d. Izz + Ixx + Iyy = 0

Last Answer : c. Izz = Ixx + Iyy

Description : What is the moment of inertia acting on a rectangle of width 15 mm and depth 40 mm about base by using theorem of parallel axes? a. 320 x 103 mm4 b. 300 x 103 mm4 c. 240 x 103 mm4 d. 80 x 103 mm

Last Answer : a. 320 x 103 mm4

Description : Moment of inertia acting on a semi-circle about symmetrical axes is given as _______ a. 1.57 r4 b. 0.055 r4 c. 0.392 r4 d. 0.11 r4

Last Answer : c. 0.392 r4

Description : A circular shaft subjected to torsion undergoes a twist of 10in a length of 120 cm. If the maximum shear stress induced is limited to 1000 kg/cm2and if modulus of rigidity G = 0.8 x 106then the radius of the shaft should be (a) p/8 (b) p/27 (c) 18/p (d) 27/p

Last Answer : (d) 27/p

Description : Which of the following is not an assumption in derivation of torsion equation? a. Circular shaft remains circular after twisting b. Plane section of the shaft remain plane after twisting c. Material of shaft is isotropic d. Angle of twist is proportional to radius

Last Answer : d. Angle of twist is proportional to radius

Description : Angle of twist of a circular shaft is given by a. GJ/Tl b. Tl/GJ. c. TJ/Gl. d.TG/Jl.

Last Answer : b. Tl/GJ.

Description : The variation of shear stress in a circular shaft subjected to torsion is a. Linear b. Parabolic c. Hyperbolic. d. Uniform

Last Answer : a. Linear

Description : The moment of inertia of a hollow circular section whose external diameter is 8 cm and interial diameter is 6 cm about the axis passing through its centre is a.66.8 cm4 b.137.5 cm4 c.550 cm4 d.33.4 cm4 e.275 cm4

Last Answer : b. 137.5 cm4

Description : The mass moment of inertia of a solid circular disk is given by (A) mR 2 /2 (B) mR 2 /3 (C) 2mR 2 /3 (D) mR 2 /4

Last Answer : (A) mR 2 /2

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]

Description : Equivalent torque in a shaft subjected to axial load P, torque T and bending moment M is (a) Teq = (Pa2 + M2 + T2) (b) Teq = (Pa2 + M2 + T2)0.5 (c)Teq = ( M2 + T2)0.5 (d) None

Last Answer : c)Teq = ( M2 + T2)0.5

Description : When the shaft is subjected to pure torsional moment, the torsional stress is given by? a) None of the listed b) 32M/πdᵌ c) 16M/πdᵌ d) 8M/πdᵌ

Last Answer : c) 16M/πdᵌ

Description : When the shaft is subjected to pure bending moment, the bending stress is given by? a) None of the listed b) 32M/πdᵌ c) 16M/πdᵌ d) 8M/πdᵌ

Last Answer : b) 32M/πdᵌ

Description : The relationship among twisting moment(T) acting on a rotating shaft, power in watt(W), and angular velocity in radian per second(w) will be (a) T = W/w (b) W = Tw (c) W = T/w (d) none of these

Last Answer : (b) W = Tw

Description : A shaft of length L is subject to a constant twisting moment T along its length L, then angle q through which one end of the bar will twist relative to other will be (a) T/g (b) T/GJ (c) GJ/TL (d) TL/GJ

Last Answer : (d) TL/GJ

Description : The product of the tangential force acting on the shaft and radius of shaft known as (a) Torsional rigidity (b) Flexural rigidity (c) Bending moment (d) Twisting moment

Last Answer : (d) Twisting moment

Description : When a shaft is subjected to a twisting moment, every cross-section of the shaft will be under (a) Tensile stress (b) Compressive stress (c) Shear stress (d) All of these

Last Answer : c) Shear stress

Description : A shaft a. Is always subjected to pure torsion b. Combination of M & T but no end thrust c. Combination of torque & end thrust but no bending moment d. May be subjected to a combination of M, T and end thrust

Last Answer : d. May be subjected to a combination of M, T and end thrust

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : A shaft is said to be in pure torsion if a. Turning moment is applied at one end and other end is free b. Turning force is applied at one end and other end is free c. Two opposite turning moments are applied to the shaft d. Combination of torsional load and bending load is applied to the shaft

Last Answer : c. Two opposite turning moments are applied to the shaft

Description : Maximum shear stress in a hollow shaft subjected to a torsional moment is at the a. Middle of thickness. b. At the inner surface of the shaft. c. At the outer surface of the shaft. d. At the middle surface of the shaft.

Last Answer : c. At the outer surface of the shaft.

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : The angle of twist for a transmission shaft is inversely proportional to (a) shaft diameter (b) (shaft diameter)2 (c) (shaft diameter)3 (d) (shaft diameter)4

Last Answer : (a) shaft diameter

Description : Two shafts A and B are made of the same material. The diameter of the shaft A is twice as that of shaft B. The power transmitted by the shaft A will be ........... of shaft B. (a) twice (b) four times (c) eight times (d) sixteen times

Last Answer : (c) eight times

Description : A hollow shaft has an inner diameter of 3.7 cm and an outer diameter of 4.0 cm. A 1 kN-m torque is applied to this shaft. What is the shear stress at the mid-radius of this shaft? (a) 117Mpa (b) 178 Mpa (c) 286 Mpa (d) 363 Mpa

Last Answer : (c) 286 Mpa