While using three moments equation, a fixed end of a continuous beam is replaced by an
additional span of
(A) Zero length
(B) Infinite length
(C) Zero moment of inertia
(D) None of the above

1 Answer

Answer :

(A) Zero length

Related questions

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : A continuous beam is simply supported on its one or both the end supports the fixing moment on simply supported beam end is a. zero b. infinite c. neglected in calculation d. multiplied by a cross over factor in calculation

Last Answer : a. zero

Description : The three moments equation is applicable only when (A) The beam is prismatic (B) There is no settlement of supports (C) There is no discontinuity such as hinges within the span (D) The spans are equal

Last Answer : (C) There is no discontinuity such as hinges within the span

Description : In a fixed beam the total change of slope along the span is a. Zero b.infinite c. neglected d.assumed to be unit value

Last Answer : a. Zero

Description : When sinking is accounted in a continuous beam the bending moment is a. modified b.same c.zero d.infinite

Last Answer : a. modified

Description : If a continuous beam is fixed on the right then the imaginary span is taken a.before the right end b. after the right end c. before the left end d. after the left end

Last Answer : b. after the right end

Description : Consider the following statements: Sinking of an intermediate support of a continuous beam 1. Reduces the negative moment at support. 2. Increases the negative moment at support. 3. Reduces the positive moment at ... 1 and 3 are correct (C) 2 and 3 are correct (D) 2 and 4 are correct

Last Answer : (A) 1 and 4 are correct

Description : Sinking of an intermediate support of a continuous beam (i) Reduces the negative moment at support (ii) Increases the negative moment at support (iii) Reduces the positive moment at center of span (iv) Increases the positive moment ... (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv)

Last Answer : Answer: Option B

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : A fixed beam with central point load undergoes a slight settlement at one end. Select suitable answer from the following: (a) Moment induced at both ends will be same (b) Moment induced at the end that ... will be maximum at the end having no settlement (d) Zero moment at the end that has settled.

Last Answer : (c) Moment induced will be maximum at the end having no settlement

Description : In continuous beam with couple , the couple will cause a. negative moment in one part and positive moment in other part of the span b. negative moment in both part of the span c. no moment d. positive moment in both part of the span

Last Answer : a. negative moment in one part and positive moment in other part of the span b. negative moment in both part of the span

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : The stiffness factor for a prismatic beam of length L and moment of inertia I, is  (A) IE/L (B) 2EI/L (C) 3EI/L (D) 4EI/L

Last Answer : (A) IE/L

Description : When sinking is accounted in a continuous beam the shear force is a.modified b.same c.zero d.infinite

Last Answer : a.modified

Description : If Ix  and Iy are the moments of inertia of a section about X and Y axes, the polar moment of inertia  of the section, is  (A) (IX + IY)/2  (B) (IX - IY)/2  (C) IX + IY (D) (IX/IY)

Last Answer : (C) IX + I

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : For a continuous floor slab supported on beams, the ratio of end span length and intermediate span length, is (A) 0.6 (B) 0.7 (C) 0.8 (D) 0.9

Last Answer : Answer: Option D

Description : If the length of an intermediate span of a continuous slab is 5m, the length of the end span is kept (A) 4.5 m (B) 4.0 m (C) 3.5 m (D) 3.0 m

Last Answer : Answer: Option A

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : In a mid point loaded fixed beam, the end number of moments created are a.2 b.3 c.4 d.1

Last Answer : a.2

Description : A continuous beam shall be deemed to be a deep beam if the ratio of effective span to overall depth, is (A) 2.5 (B) 2.0 (C) Less than 2 (D) Less than 2.5

Last Answer : Answer: Option A

Description : If the ratio of the span to the overall depth does not exceed 10, the stiffness of the beam will ordinarily be satisfactory in case of a (A) Simply supported beam (B) Continuous beam (C) Cantilever beam (D) None of these

Last Answer : Answer: Option C

Description : A continuous beam is deemed to be a deep beam when the ratio of effective span to overall depth (1/D) is less than (A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0

Last Answer : Answer: Option C

Description : In the three moment equation method a. imaginary span unit span is assumed b. imaginary span zero span is assumed c. no imaginary span assumed d.twice the imaginary span is assumed

Last Answer : b. imaginary span zero span is assumed

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is 10 kg/cm2 , the length of the beam having nominal reinforcement, is (A) 8 cm (B) 6 m (C) 8 m (D) 10 m

Last Answer : Answer: Option C

Description : In case of cantilever, irrespective of the type of loading the maximum bendry moment and maximum shear force occur at a.107 dynes b.Free end c.2/3 of the length, from the free end d.Centre of the beam e.Fixed end

Last Answer : e. Fixed end

Description : An Athlets runs before long jump to get advantage on – (1) Inertia of motion (2) Frictional force (3) Moment of a force (4) Principle of moments

Last Answer : (1) Inertia of motion Explanation: An athlete does so to build up forward momentum so that when he jumps he already has a forward motion that would be greater than that of a jump made from standing in ... in terms of inertia of motion which is the tendency of an object to resist a change in motion.

Description : A vertical column has two moments of inertia (i.e. Ixx and Iyy ). The column will tend to buckle in the direction of the (a) axis of load (b) perpendicular to the axis of load (c) maximum moment of inertia (d) minimum moment of inertia

Last Answer : (d) minimum moment of inertia

Description : An athlete runs before long jump to get advantage on (1) Inertia of motion (2) Frictional force (3) Moment of a force (4) Principle of moments

Last Answer : Inertia of motion

Description : Negative yield line form i. Near the supports in the case of slabs fixed or continuous at the edge. ii. At mid span in the case of slabs fixed. iii.At mid span for simply supported circular slab [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ A ] i

Description : A beam fixed at both ends with a central load W in the middle will have zero bending moment at a.one place b.two places c.no where d.three places e.107 dynes

Last Answer : b. two places

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : A 8 metre long simply supported rectangular beam which carries a distributed load 45 kg/m. experiences a maximum fibre stress 160 kg/cm2 . If the moment of inertia of the beam is 640 cm4 , the overall depth of the beam is (A) 10 cm (B) 12 cm (C) 15 cm (D) 18 cm

Last Answer : (A) 10 cm

Description : .Freely supported beams are assumed to be fixed beams if subjected to a. end loads which makes displacement zero b. end moments c. end couples which makes slope zero d. moments

Last Answer : c. end couples which makes slope zero

Description : According to principle of moments  (A) If a system of coplanar forces is in equilibrium, then their algebraic sum is zero  (B) If a system of coplanar forces is in equilibrium, then the ... of  their resultant about the same point  (D) Positive and negative couples can be balanced

Last Answer : (C) The algebraic sum of the moments of any two forces about any point is equal to moment of  their resultant about the same point 

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : A diagram which shows the variations of the axial load for all sections of the span of a beam, is called (A) Bending moment diagram (B) Shear force diagram (C) Thrust diagram (D) Stress diagram

Last Answer : Answer: Option C

Description : The maximum bending moment due to a moving load on a simply supported beam, occurs (A) At the mid span (B) At the supports (C) Under the load (D) Anywhere on the beam

Last Answer : (C) Under the load

Description : Which one of the following is the correct ratio of plastic moment to yield moment for a simply supported beam of uniform square cross section throughout the span (a) 1.5 (b) 1.7 (c) 2.0 (d) 2.34

Last Answer : (a) 1.5

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : At either end of a plane frame, maximum number of possible bending moments, are (A) Zero (B) One (C) Two (D) Three

Last Answer : (A) Zero

Description : In a ring beam subjected to uniformly distributed load (i) Shear force at mid span is zero (ii) Shear force at mid span is maximum (iii) Torsion at mid span is zero (iv) Torsion at mid span is maximum The correct answer ... and (iii) (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv)

Last Answer : Option A

Description : What is the distance away from midspan of a plastic hinge if developing in a simply supported beam of rectangular cross-section and span 6 m, subjected to a point load at the centre? (a) Zero (b) 1 m (c) 2 m (d) 3 m

Last Answer : (a) Zero

Description : In case of principal axes of a section  (A) Sum of moment of inertia is zero  (B) Difference of moment inertia is zero  (C) Product of moment of inertia is zero  (D) None of these 

Last Answer : (C) Product of moment of inertia is zero 

Description : The moment diagram for a cantilever carrying linearly varying load from zero at its free end and to maximum at the fixed end will be a (A) Triangle (B) Rectangle (C) Parabola (D) Cubic parabola

Last Answer : (D) Cubic parabola

Description : The ratio of moments of inertia of a triangular section about its base and about a centroidal axis  parallel to its base, is  (A) 1.0  (B) 1.5  (C) 2.0  (D) 3.0 

Last Answer : (D) 3.0