The ratio of the maximum deflection of a cantilever beam with an isolated load at its free end and
with a uniformly distributed load over its entire length, is
(A) 1
(B) 24/15
(C) 3/8
(D) 8/3

1 Answer

Answer :

(D) 8/3

Related questions

Description : The ratio of the maximum deflections of a beam simply supported at its ends with an isolated central load and that of with a uniformly distributed load over its entire length, is (A) 3/2 (B) 15/24 (C) 24/15 (D) 2/3

Last Answer : (C) 24/15

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : A cantilever of length 3 m carries a uniformly distributed load over the entire length.If the deflection at the free end is 40 mm,find the slope at the free end. a.0.0115 rad b.0.01777 rad c.0.001566 rad d.0.00144 rad

Last Answer : b.0.01777 rad

Description : A uniform girder simply supported at its ends is subjected to a uniformly distributed load over its entire length and is propped at the centre so as to neutralise the deflection. The net B.M. at the centre will be (A) WL (B) WL/8 (C) WL/24 (D) WL/32

Last Answer : (D) WL/32

Description : A cantilever beam rectangular in cross-section is subjected to an isolated load at its free end. If the  width of the beam is doubled, the deflection of the free end will be changed in the ratio of  (A) 8  (B) 1/8  (C) 1/2  (D) 3

Last Answer : (C) 1/2 

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : A simply supported beam A carries a point load at its mid span. Another identical beam B carries  the same load but uniformly distributed over the entire span. The ratio of the maximum  deflections of the beams A and B, will be  (A) 2/3  (B) 3/2  (C) 5/8  (D) 8/5 

Last Answer : (D) 8/5 

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : If the length of a cantilever carrying an isolated load at its free end is doubled, the deflection of the free end will increase by (A) 8 (B) 1/8 (C) 1/3 (D) 2

Last Answer : (B) 1/8

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : In a simply supported beam (l + 2a) with equal overhangs (a) and carrying a uniformly distributed load over its entire length, B.M. at the middle point of the beam will be zero if (A) l = 2a (B) l = 4a (C) l < 2a (D) l > a

Last Answer : (A) l = 2a

Description : A cantilever of length 3m carries a uniformly distributed load of 15KN/m over a length of 2m from the free end.If I= 108 mm4 and E= 2×105 N/mm2,find the slope at the free end? a.0.00326 rad b.0.00578 rad c.0.00677 rad d.0.00786 rad

Last Answer : a.0.00326 rad

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : A beam of length L supported on two intermediate rollers carries a uniformly distributed load on its entire length. If sagging B.M. and hogging B.M. of the beam are equal, the length of each overhang, is (A) 0.107 L (B) 0.207 L (C) 0.307 L(D) 0.407 L

Last Answer : (B) 0.207 L

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : The ratio of the maximum deflections of a simply supported beam with a central load W and of a  cantilever of same length and with a load W at its free end, is  (A) 1/8  (B) 1/10  (C) 1/12  (D) 1/16 

Last Answer : (D) 1/16 

Description : A simply supported beam which carries a uniformly distributed load has two equal overhangs. To  have maximum B.M. produced in the beam least possible, the ratio of the length of the overhang  to the total length of the beam, is  (A) 0.207  (B) 0.307  (C) 0.407  (D) 0.508 

Last Answer : (A) 0.207 

Description : Shear force for a cantilever carrying a uniformly distributed load over its length, is  (A) Triangle  (B) Rectangle  (C) Parabola  (D) Cubic parabola 

Last Answer : (B) Rectangle 

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : Find the correct statement from the followings. (a) For a cantilever slab, the ratio of span to overall depth should not 12. (b) One way slab which carry uniformly distributed load should be designed to ... be designed to resist a hogging moment at the face of the support. (d) All of the above.

Last Answer : (d) All of the above.

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at two points, the maximum, B.M. at the centre of the pile or at the points of suspension, is (A) WL/8 (B) WL²/24 (C) WL²/47 (D) WL²/16

Last Answer : Answer: Option C

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at the centre and from other two points 0.15 L from either end ; the maximum hogging moment will be (A) WL²/15 (B) WL²/30 (C) WL²/60 (D) WL²/90

Last Answer : Answer: Option D

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : If a three hinged parabolic arch, (span l, rise h) is carrying a uniformly distributed load w/unit  length over the entire span,  (A) Horizontal thrust is wl2 /8h (B) S.F. will be zero throughout  (C) B.M. will be zero throughout  (D) All the above 

Last Answer : (D) All the above 

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : A simply supported beam (l + 2a) with equal overhangs (a) carries a uniformly distributed load  over the whole length, the B.M. changes sign if  (A) l > 2a (B) l < 2a (C) l = 2a (D) l = 4a

Last Answer : (A) l > 2a

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free  end. If the modulus of elasticity of the material is 0.2 × 106  N/mm2 , the deflection of the free end,  is  (A) 2 mm  (B) 3 mm  (C) 4 mm  (D) 5 mm

Last Answer : (D) 5 mm

Description : The moment diagram for a cantilever which is subjected to a uniformly distributed load will be a (A) Triangle (B) Rectangle (C) Parabola (D) Cubic parabola

Last Answer : (C) Parabola

Description : The ratio of the deflections of the free end of a cantilever due to an isolated load at 1/3rd and  2/3rd of the span, is  (A) 1/7  (B) 2/7  (C) 3/7  (D) 2/5 

Last Answer : (B) 2/7 

Description : If a rectangular beam measuring 10 × 18 × 400 cm carries a uniformly distributed load such that the bending stress developed is 100 kg/cm2 . The intensity of the load per metre length, is (A) 240 kg (B) 250 kg (C) 260 kg (D) 270 kg

Last Answer : (B) 250 kg

Description : A uniformly distributed load (w) of length shorter than the span crosses a girder. The bending moment at a section in the girder will be maximum when (a) Head of the load is at the section (b) Tail ... load in the same ratio as it divides the span (d) Section divides the load in two equal lengths.

Last Answer : (c) Section divides the load in the same ratio as it divides the span

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : Shear deflection of a cantilever of length L, cross sectional area A and shear modulus G, under a concentrated load W at its free end, is (A) (2/3) (WL/AG) (B) (1/3) (WL²/EIA) (C) (3/2) (WL/AG) (D) (3/2) (WL²/AG

Last Answer : (C) (3/2) (WL/AG