Shear force for a cantilever carrying a uniformly distributed load over its length, is 

(A) Triangle 

(B) Rectangle 

(C) Parabola 

(D) Cubic parabola 

1 Answer

Answer :

(B) Rectangle 

Related questions

Description : The moment diagram for a cantilever which is subjected to a uniformly distributed load will be a (A) Triangle (B) Rectangle (C) Parabola (D) Cubic parabola

Last Answer : (C) Parabola

Description : The moment diagram for a cantilever carrying linearly varying load from zero at its free end and to maximum at the fixed end will be a (A) Triangle (B) Rectangle (C) Parabola (D) Cubic parabola

Last Answer : (D) Cubic parabola

Description : The moment diagram for a cantilever carrying a concentrated load at its free end, will be  (A) Triangle  (B) Rectangle  (C) Parabola  (D) Cubic parabola 

Last Answer : (A) Triangle

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the shear force diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (c) Follows a parabolic law

Description : The moment diagram for a cantilever whose free end is subjected to a bending moment, will be a  (A) Triangle  (B) Rectangle  (C) Parabola  (D) Cubic parabola 

Last Answer : (B) Rectangle 

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : Pick up the correct statement from the following:  (A) For a uniformly distributed load, the shear force varies linearly  (B) For a uniformly distributed load, B.M. curve is a parabola  (C) For a load varying linearly, the shear force curve is a parabola  (D) All the above 

Last Answer : (D) All the above 

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : For any part of a beam subjected to uniformly distributed load, Shear force diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The ratio of the maximum deflection of a cantilever beam with an isolated load at its free end and with a uniformly distributed load over its entire length, is (A) 1 (B) 24/15 (C) 3/8 (D) 8/3

Last Answer : (D) 8/3

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the Bending moment diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (d) Follows a cubic law

Description : The bending moment diagram for a cantilever with U.D.L. over the whole span will be (a) Triangle (b) Rectangle (c) Parabola (d) Ellipse

Last Answer : (c) Parabola

Description : A cantilever of length 3m carries a uniformly distributed load of 15KN/m over a length of 2m from the free end.If I= 108 mm4 and E= 2×105 N/mm2,find the slope at the free end? a.0.00326 rad b.0.00578 rad c.0.00677 rad d.0.00786 rad

Last Answer : a.0.00326 rad

Description : A cantilever of length 3 m carries a uniformly distributed load over the entire length.If the deflection at the free end is 40 mm,find the slope at the free end. a.0.0115 rad b.0.01777 rad c.0.001566 rad d.0.00144 rad

Last Answer : b.0.01777 rad

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : In a simply supported beam (l + 2a) with equal overhangs (a) and carrying a uniformly distributed load over its entire length, B.M. at the middle point of the beam will be zero if (A) l = 2a (B) l = 4a (C) l < 2a (D) l > a

Last Answer : (A) l = 2a

Description : If a three hinged parabolic arch, (span l, rise h) is carrying a uniformly distributed load w/unit  length over the entire span,  (A) Horizontal thrust is wl2 /8h (B) S.F. will be zero throughout  (C) B.M. will be zero throughout  (D) All the above 

Last Answer : (D) All the above 

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : A cable with a uniformly distributed load per horizontal metre run will take the following shape (A) Straight line (B) Parabola (C) Hyperbola (D) Elliptical

Last Answer : (B) Parabola

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at the centre and from other two points 0.15 L from either end ; the maximum hogging moment will be (A) WL²/15 (B) WL²/30 (C) WL²/60 (D) WL²/90

Last Answer : Answer: Option D

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at two points, the maximum, B.M. at the centre of the pile or at the points of suspension, is (A) WL/8 (B) WL²/24 (C) WL²/47 (D) WL²/16

Last Answer : Answer: Option C

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : In a ring beam subjected to uniformly distributed load (i) Shear force at mid span is zero (ii) Shear force at mid span is maximum (iii) Torsion at mid span is zero (iv) Torsion at mid span is maximum The correct answer ... and (iii) (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv)

Last Answer : Option A

Description : Find the correct statement from the followings. (a) For a cantilever slab, the ratio of span to overall depth should not 12. (b) One way slab which carry uniformly distributed load should be designed to ... be designed to resist a hogging moment at the face of the support. (d) All of the above.

Last Answer : (d) All of the above.

Description : .For a fixed beam with UDL,the free moment diagram represent a a.rectangle b.parabola c.triangle d.cubic curve

Last Answer : b.parabola

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : The number of points of contraflexure in a simple supported beam carrying uniformly distributed load, is (A) 0 (B) 1 (C) 2 (D) 3

Last Answer : (A) 0

Description : For a circular slab carrying a uniformly distributed load, the ratio of the maximum negative to maximum positive radial moment, is (A) 1 (B) 2 (C) 3 (D) 5

Last Answer : Answer: Option B

Description : A slab simply supported on the four edges, with corners not held down and carrying uniformly distributed load, is used in (a) Singly storeyed buildings. (b) Double storeyed buildings. (c) Multi storeyed buildings (d) All the above

Last Answer : (a) Singly storeyed buildings.

Description : A two way slab (a) May be simply supported on the four edges, with comers not held down and carrying uniformly distributed load. (b) May be simply supported on the four edge , with corners held ... . (c) May have edges fixed or continuous and carrying uniformly distributed load. (d) All the above.

Last Answer : (d) All the above.

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : A uniform girder simply supported at its ends is subjected to a uniformly distributed load over its entire length and is propped at the centre so as to neutralise the deflection. The net B.M. at the centre will be (A) WL (B) WL/8 (C) WL/24 (D) WL/32

Last Answer : (D) WL/32

Description : The ratio of the maximum deflections of a beam simply supported at its ends with an isolated central load and that of with a uniformly distributed load over its entire length, is (A) 3/2 (B) 15/24 (C) 24/15 (D) 2/3

Last Answer : (C) 24/15

Description : A simply supported beam (l + 2a) with equal overhangs (a) carries a uniformly distributed load  over the whole length, the B.M. changes sign if  (A) l > 2a (B) l < 2a (C) l = 2a (D) l = 4a

Last Answer : (A) l > 2a

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  increasing load, is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular 

Last Answer : (C) Cubical 

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : A beam of length L supported on two intermediate rollers carries a uniformly distributed load on its entire length. If sagging B.M. and hogging B.M. of the beam are equal, the length of each overhang, is (A) 0.107 L (B) 0.207 L (C) 0.307 L(D) 0.407 L

Last Answer : (B) 0.207 L

Description : In a spherical dome subjected to concentrated load at crown or uniformly distributed load, the meridional force is always (A) Zero (B) Tensile (C) Compressive (D) Tensile or compressive

Last Answer : (C) Compressive

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E