If a rectangular beam measuring 10 × 18 × 400 cm carries a uniformly distributed load such that
the bending stress developed is 100 kg/cm2
. The intensity of the load per metre length, is
(A) 240 kg
(B) 250 kg
(C) 260 kg
(D) 270 kg

1 Answer

Answer :

(B) 250 kg

Related questions

Description : A 8 metre long simply supported rectangular beam which carries a distributed load 45 kg/m. experiences a maximum fibre stress 160 kg/cm2 . If the moment of inertia of the beam is 640 cm4 , the overall depth of the beam is (A) 10 cm (B) 12 cm (C) 15 cm (D) 18 cm

Last Answer : (A) 10 cm

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so  that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the  value of E = 0.2 ... joist, is  (A) 200 mm  (B) 250 mm  (C) 300 mm  (D) 400 mm 

Last Answer : (D) 400 mm 

Description : Area of steel required per metre width of pavement for a length of 20 m for design wheel load 6300 kg and permissible stress in steel 1400 kg/cm2 , is (A) 70 kg/sq cm (B) 80 kg/sq cm (C) 90 kg/sq cm (D) 100 kg/sq cm

Last Answer : Answer: Option C

Description : The section modulus of a rectangular light beam 25 metres long is 12.500 cm3 . The beam is simply supported at its ends and carries a longitudinal axial tensile load of 10 tonnes in addition to a point load of ... 13.33 kg/cm2 compressive (C) 26.67 kg/cm2 tensile (D) 26.67 kg/cm2 compressive

Last Answer : (C) 26.67 kg/cm2 tensile

Description : An R.C.C. column of 30 cm diameter is reinforced with 6 bars 12 mm placed symmetrically along the circumference. If it carries a load of 40, 000 kg axially, the stress is (A) 49.9 kg/cm2 (B) 100 kg/cm2 (C) 250 kg/cm2 (D) 175 kg/cm

Last Answer : Answer: Option A

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : An R.C.C. beam of 25 cm width and 50 cm effective depth has a clear span of 6 metres and carries a U.D.L. of 3000 kg/m inclusive of its self weight. If the lever arm constant for the section is 0.865, the maximum intensity ... , is (A) 8.3 kg/cm2 (B) 7.6 kg/cm2 (C) 21.5 kg/cm2 (D) 11.4 kg/cm2

Last Answer : Answer: Option A

Description : A three hinged parabolic arch hinged at the crown and springing, has a horizontal span of 4.8 m  and a central rise of 1 m. It carries a uniformly distributed load of 0.75 tonne per metre over half  left hand span ... A) 10.8 tonnes  (B) 1.08 tonnes  (C) 1.8 tonnes  (D) 0.8 tonnes 

Last Answer : (B) 1.08 tonnes 

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : A simply supported wooden beam 150 cm long and having a cross section 16 cm × 24 cm carries a  concentrated load, at the centre. If the permissible stress ft = 75 kg/cm2  and fs= 10 kg/cm2  the safe  load is  (A) 3025 kg  (B) 3050 kg  (C) 3075 kg  (D) 3100 kg 

Last Answer : (C) 3075 kg 

Description : While testing a cast iron beam (2.5 cm × 2.5 cm) in section and a metre long simply supported at  the ends failed when a 100 kg weight is applied at the centre. The maximum stress induced is:  (A) 960 kg/cm2 (B) 980 kg/cm2 (C) 1000 kg/cm2 (D) 1200 kg/c

Last Answer : (A) 960 kg/cm

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : An R.C.C. beam of 6 m span is 30 cm wide and has a lever arm of 55 cm. If it carries a U.D.L. of 12 t per m and allowable shear stress is 5 kg/cm2 , the beam (A) Is safe in shear (B) Is safe with stirrups (C) Is safe with stirrups and inclined bars (D) Needs revision of section

Last Answer : Answer: Option D

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : A simply supported beam which carries a uniformly distributed load has two equal overhangs. To  have maximum B.M. produced in the beam least possible, the ratio of the length of the overhang  to the total length of the beam, is  (A) 0.207  (B) 0.307  (C) 0.407  (D) 0.508 

Last Answer : (A) 0.207 

Description : A simply supported beam (l + 2a) with equal overhangs (a) carries a uniformly distributed load  over the whole length, the B.M. changes sign if  (A) l > 2a (B) l < 2a (C) l = 2a (D) l = 4a

Last Answer : (A) l > 2a

Description : A beam of length L supported on two intermediate rollers carries a uniformly distributed load on its entire length. If sagging B.M. and hogging B.M. of the beam are equal, the length of each overhang, is (A) 0.107 L (B) 0.207 L (C) 0.307 L(D) 0.407 L

Last Answer : (B) 0.207 L

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : A rectangular beam 20 cm wide is subjected to a maximum shearing force of 10,000 kg, the corresponding maximum shearing stress being 30 kg/cm2 . The depth of the beam is (A) 15 cm (B) 20 cm (C) 25 cm (D) 30 cm

Last Answer : (C) 25 cm

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at the centre and from other two points 0.15 L from either end ; the maximum hogging moment will be (A) WL²/15 (B) WL²/30 (C) WL²/60 (D) WL²/90

Last Answer : Answer: Option D

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at two points, the maximum, B.M. at the centre of the pile or at the points of suspension, is (A) WL/8 (B) WL²/24 (C) WL²/47 (D) WL²/16

Last Answer : Answer: Option C

Description : The maximum compressive stress at the top of a beam is 1600 kg/cm2 and the corresponding tensile stress at its bottom is 400 kg/cm2 . If the depth of the beam is 10 cm, the neutral axis from the top, is (A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm

Last Answer : (D) 8 cm

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : The stresses developed in concrete and steel in reinforced concrete beam 25 cm width and 70 cm effective depth, are 62.5 kg/cm2 and 250 kg/cm2 respectively. If m = 15, the depth of its neutral axis is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : There are two sets of five numbers each - set P and set Q. P is a set of consecutive even numbers and Q is a set of consecutive numbers. The sum of the numbers of P is 230. The second least number in Q is 33 less ... the sum of the numbers in Q. 1 : 260 2 : 250 3 : 240 4 : 270 5 : None of these

Last Answer : 1 : 260

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : A simply supported beam A carries a point load at its mid span. Another identical beam B carries  the same load but uniformly distributed over the entire span. The ratio of the maximum  deflections of the beams A and B, will be  (A) 2/3  (B) 3/2  (C) 5/8  (D) 8/5 

Last Answer : (D) 8/5 

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : The allowable tensile stress in mild steel stirrups, reinforced cement concrete, is (A) 1400 kg/cm2 (B) 190 kg/cm2 (C) 260 kg/cm2 (D) 230 kg/cm

Last Answer : Answer: Option A

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is 10 kg/cm2 , the length of the beam having nominal reinforcement, is (A) 8 cm (B) 6 m (C) 8 m (D) 10 m

Last Answer : Answer: Option C

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 6 m effective span is 10 kg/cm2 , the share stirrups are provided for a distance from either end where, is (A) 50 cm (B) 100 cm (C) 150 cm (D) 200 cm

Last Answer : Answer: Option C

Description : A cable with a uniformly distributed load per horizontal metre run will take the following shape (A) Straight line (B) Parabola (C) Hyperbola (D) Elliptical

Last Answer : (B) Parabola

Description : The ratio of the length and depth of a simply supported rectangular beam which experiences  maximum bending stress equal to tensile stress, due to same load at its mid span, is  (A) 1/2  (B) 2/3  (C) 1/4  (D) 1/3

Last Answer : (B) 2/3 

Description : In a tension test, the yield stress is 300 kg/cm2 , in the octahedral shear stress at the point is: (A) 100 kg/cm2 (B) 150 kg/cm2 (C) 200 kg/cm (D) 250 kg/cm2

Last Answer : (A) 100 kg/cm2

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : A uniformly distributed load (w) of length shorter than the span crosses a girder. The bending moment at a section in the girder will be maximum when (a) Head of the load is at the section (b) Tail ... load in the same ratio as it divides the span (d) Section divides the load in two equal lengths.

Last Answer : (c) Section divides the load in the same ratio as it divides the span

Description : When a uniformly distributed load, shorter than the span of the girder, moves from left to right, then the conditions for maximum bending moment at a section is that (A) The head of the load ... position should be such that the section divides the load in the same ratio as it divides the span

Last Answer : (D) The load position should be such that the section divides the load in the same ratio as it divides the span

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola