If ∫ H.dL = 0, then which statement will be true?
a) E = -Grad(V)
b) B = -Grad(D)
c) H = -Grad(Vm)
d) D = -Grad(A)

1 Answer

Answer :

c) H = -Grad(Vm)

Related questions

Description : For a conservative field which of the following equations holds good? a) ∫ E.dl = 0 b) ∫ H.dl = 0 c) ∫ B.dl = 0 d) ∫ D.dl = 0

Last Answer : a) ∫ E.dl = 0

Description : Which of the following relations is correct? a) MMF = ∫ B.dl b) MMF = ∫ H.dl c) EMF = ∫ E.dl d) EMF = ∫ D.dl

Last Answer : c) EMF = ∫ E.dl

Description : The value of ∫ H.dL will be a) J b) I c) B d) H

Last Answer : b) I

Description : Choose the best relation. a) A = -Div(V) b) V = Curl(A) c) H = -Grad(V) d) V = Div(E)

Last Answer : c) H = -Grad(V)

Description : Which equation will be true, if the medium is considered to be air? a) Curl(H) = 0 b) Div(H) = 0 c) Grad(H) = 0 d) Div(H) = 1

Last Answer : b) Div(H) = 0

Description : If a function is said to be harmonic, then a) Curl(Grad V) = 0 b) Div(Curl V) = 0 c) Div(Grad V) = 0 d) Grad(Curl V) = 0

Last Answer : c) Div(Grad V) = 0

Description : Which of the following identities is always zero for static fields? a) Grad(Curl V) b) Curl(Div V) c) Div(Grad V) d) Curl(Grad V)

Last Answer : d) Curl(Grad V)

Description : The curl of curl of a vector is given by, a) Div(Grad V) – (Del) 2 V b) Grad(Div V) – (Del) 2 V c) (Del) 2 V – Div(Grad V) d) (Del) 2 V – Grad(Div V)

Last Answer : b) Grad(Div V) – (Del) 2 V

Description : The Laplacian operator is actually a) Grad(Div V) b) Div(Grad V) c) Curl(Div V) d) Div(Curl V)

Last Answer : b) Div(Grad V)

Description : Find ∫ for steam at 100 psia and 600°F.If h = 1329.6 and v = 6.216  a. 1214 Btu / lb  b. 1234 Btu /lb  c. 1342 Btu / lb  d. 1324 Btu /lb formula: ∫ = h– pv/ J

Last Answer : 1214Btu / lb

Description : An electric field is given as E = 6y 2 z i + 12xyz j + 6xy 2 k. An incremental path is given by dl = -3 i + 5 j – 2 k mm. The work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is (in Joule) a) 0.64 b) 0.72 c) 0.78 d) 0.80

Last Answer : b) 0.72

Description : Find the correct relation between current density and magnetization. a) J = Grad(M) b) J = Div(M) c) J = Curl(M) d) M = Curl(J)

Last Answer : c) J = Curl(M)

Description : The current element of the magnetic vector potential for a surface current will be a) J dS b) I dL c) K dS d) J dV

Last Answer : c) K dS

Description : The magnetic vector potential for a line current will be inversely proportional to a) dL b) I c) J d) R

Last Answer : d) R

Description : The sequence for finding H from E is a) E-B-H b) E-V-H c) E-D-H d) E-A-H

Last Answer : a) E-B-H

Description : Find the sequence to find B when E is given. a) E-D-H-B b) B-E-D c) H-B-E-D d) V-E-B

Last Answer : a) E-D-H-B

Description : The sequence for finding E when charge density is given is a) E-D-ρv b) E-B-ρv c) E-H-ρv d) E-V-ρv

Last Answer : a) E-D-ρv

Description : The H quantity is analogous to which component in the following? a) B b) D c) E d) V

Last Answer : c) E

Description : The point form of Ampere law is given by a) Curl(B) = I b) Curl(D) = J c) Curl(V) = I d) Curl(H) = J

Last Answer : d) Curl(H) = J

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : In conductors, the E and H vary by a phase difference of a) 0 b) 30 c) 45 d) 60

Last Answer : c) 45

Description : In lossy dielectric, the phase difference between the electric field E and the magnetic field H is a) 90 b) 60 c) 45 d) 0

Last Answer : d) 0

Description : It cannot be determined from Gauss law, whereas the remaining options can be computed from Gauss law. 10. Gauss law for magnetic fields is given by a) Div(E) = 0 b) Div(B) = 0 c) Div(H) = 0 d) Div(D) = 0

Last Answer : b) Div(B) = 0

Description : Which of the following statements is true? a) E is the cross product of v and B b) B is the cross product of v and E c) E is the dot product of v and B d) B is the dot product of v and E

Last Answer : a) E is the cross product of v and B

Description : The function V = e x sin y + z does not satisfy Laplace equation. State True/False. a) True b) False

Last Answer : b) False

Description : The power in a wave given that H component is 0.82 units in air. a) 126.74 b) 621.47 c) 216.47 d) 745.62

Last Answer : a) 126.74

Description : The divergence of H will be a) 1 b) -1 c) ∞ d) 0

Last Answer : d) 0

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Find the time constant in a series R-L circuit when the resistance is 4 ohm and the inductance is 2 H. a) 0.25 b) 0.2 c) 2 d) 0.5

Last Answer : d) 0.5

Description : In waveguides, which of the following conditions will be true? a) V > c b) V < c c) V = c d) V >> c

Last Answer : a) V > c

Description : The given equation satisfies the Laplace equation. V = x 2 + y 2 – z 2 . State True/False. a) True b) False

Last Answer : a) True

Description : On equating the generic form of current density equation and the point form of Ohm’s law, we can obtain V=IR. State True/False. a) True b) False

Last Answer : a) True

Description : If potential V = 20/(x 2 + y 2 ). The electric field intensity for V is 40(x i + y j)/(x 2 + y 2 ) 2 . State True/False. a) True b) False

Last Answer : a) True

Description : The point form of Gauss law is given by, Div(V) = ρv State True/False. a) True b) False

Last Answer : a) True

Description : If V = 2x 2 y + 20z – 4/(x 2 + y 2 ), find the density at A(6, -2.5, 3) in nC/m 2 . a) 0.531i – 0.6373j – 0.177k b) 0.6373i – 0.177j -0.531k c) 0.177i – 0.6373j – 0.531k d) 0.531i – 0.177j – 0.6373k

Last Answer : a) 0.531i – 0.6373j – 0.177k

Description : If the potential is given by, V = 10sin θ cosφ/r, find the density at the point P(2, π/2, 0) (in 10 -12 units) a) 13.25 b) 22.13 c) 26.31 d) 31.52

Last Answer : b) 22.13

Description : Find the Laplace equation value of the following potential field V = r cos θ + φ a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0

Description : Find the Laplace equation value of the following potential field V = ρ cosφ + z a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : Find the Laplace equation value of the following potential field V = x 2 – y 2 + z 2 a) 0 b) 2 c) 4 d) 6

Last Answer : b) 2

Description : Identify the correct vector identity. a) i . i = j . j = k . k = 0 b) i X j = j X k = k X i = 1 c) Div (u X v) = v . Curl(u) – u . Curl(v) d) i . j = j . k = k . i = 1

Last Answer : c) Div (u X v) = v . Curl(u) – u . Curl(v)

Description : The Poynting vector is the power component that is calculated by the a) Product of E and H b) Ratio of E and H c) Dot product of E and H d) Cross product of E and H

Last Answer : d) Cross product of E and H

Description : The work done in the power transmission with E and H given by 50 and 65 respectively. The velocity of propagation is 20m/s. a) 162.5 b) 621.5 c) 562.1 d) 261.5

Last Answer : a) 162.5

Description : Find the power of a wave given that the RMS value of E and H are 6 and 4.5 respectively. a) 24 b) 27 c) 29 d) 32

Last Answer : b) 27

Description : Find the power of an EM wave, given that the cross product of the E and H component is 2 + 3j. a) 2 b) 1 c) 4 d) 8

Last Answer : b) 1

Description : For dielectrics, which two components will be in phase? a) E and wave direction b) H and wave direction c) Wave direction and E x H d) E and H

Last Answer : d) E and H

Description : Which components exist in an electromagnetic wave? a) Only E b) Only H c) Both E and H d) Neither E or H

Last Answer : c) Both E and H

Description : The surface integral of which parameter is zero? a) E b) D c) B d) H

Last Answer : c) B

Description : The line integral of which parameter is zero for static fields? a) E b) H c) D d) B

Last Answer : a) E

Description : In dielectric medium, the Maxwell second equation becomes a) Curl(H) = Jd b) Curl(H) = Jc c) Curl(E) = Jd d) Curl(E) = Jd

Last Answer : a) Curl(H) = Jd

Description : The Maxwell second equation that is valid in any conductor is a) Curl(H) = Jc b) Curl(E) = Jc c) Curl(E) = Jd d) Curl(H) = Jd

Last Answer : a) Curl(H) = Jc