Choose the best relation.
a) A = -Div(V)
b) V = Curl(A)
c) H = -Grad(V)
d) V = Div(E)

1 Answer

Answer :

c) H = -Grad(V)

Related questions

Description : Find the correct relation between current density and magnetization. a) J = Grad(M) b) J = Div(M) c) J = Curl(M) d) M = Curl(J)

Last Answer : c) J = Curl(M)

Description : Which equation will be true, if the medium is considered to be air? a) Curl(H) = 0 b) Div(H) = 0 c) Grad(H) = 0 d) Div(H) = 1

Last Answer : b) Div(H) = 0

Description : Which of the following identities is always zero for static fields? a) Grad(Curl V) b) Curl(Div V) c) Div(Grad V) d) Curl(Grad V)

Last Answer : d) Curl(Grad V)

Description : If a function is said to be harmonic, then a) Curl(Grad V) = 0 b) Div(Curl V) = 0 c) Div(Grad V) = 0 d) Grad(Curl V) = 0

Last Answer : c) Div(Grad V) = 0

Description : The curl of curl of a vector is given by, a) Div(Grad V) – (Del) 2 V b) Grad(Div V) – (Del) 2 V c) (Del) 2 V – Div(Grad V) d) (Del) 2 V – Grad(Div V)

Last Answer : b) Grad(Div V) – (Del) 2 V

Description : The Laplacian operator is actually a) Grad(Div V) b) Div(Grad V) c) Curl(Div V) d) Div(Curl V)

Last Answer : b) Div(Grad V)

Description : The relation between flux density and vector potential is a) B = Curl(A) b) A = Curl(B) c) B = Div(A) d) A = Div(B)

Last Answer : a) B = Curl(A)

Description : Find the Maxwell equation derived from Faraday’s law. a) Div(H) = J b) Div(D) = I c) Curl(E) = -dB/dt d) Curl(B) = -dH/dt

Last Answer : c) Curl(E) = -dB/dt

Description : Find the Maxwell law derived from Ampere law. a) Div(I) = H b) Div(H) = J c) Curl(H) = J d) Curl(B) = D

Last Answer : c) Curl(H) = J

Description : Identify the correct vector identity. a) i . i = j . j = k . k = 0 b) i X j = j X k = k X i = 1 c) Div (u X v) = v . Curl(u) – u . Curl(v) d) i . j = j . k = k . i = 1

Last Answer : c) Div (u X v) = v . Curl(u) – u . Curl(v)

Description : If ∫ H.dL = 0, then which statement will be true? a) E = -Grad(V) b) B = -Grad(D) c) H = -Grad(Vm) d) D = -Grad(A)

Last Answer : c) H = -Grad(Vm)

Description : The point form of Ampere law is given by a) Curl(B) = I b) Curl(D) = J c) Curl(V) = I d) Curl(H) = J

Last Answer : d) Curl(H) = J

Description : It cannot be determined from Gauss law, whereas the remaining options can be computed from Gauss law. 10. Gauss law for magnetic fields is given by a) Div(E) = 0 b) Div(B) = 0 c) Div(H) = 0 d) Div(D) = 0

Last Answer : b) Div(B) = 0

Description : The point form of Gauss law is given by, Div(V) = ρv State True/False. a) True b) False

Last Answer : a) True

Description : The relation between vector potential and field strength is given by a) Gradient b) Divergence c) Curl d) Del operator

Last Answer : a) Gradient

Description : In dielectric medium, the Maxwell second equation becomes a) Curl(H) = Jd b) Curl(H) = Jc c) Curl(E) = Jd d) Curl(E) = Jd

Last Answer : a) Curl(H) = Jd

Description : The Maxwell second equation that is valid in any conductor is a) Curl(H) = Jc b) Curl(E) = Jc c) Curl(E) = Jd d) Curl(H) = Jd

Last Answer : a) Curl(H) = Jc

Description : Ampere law states that, a) Divergence of H is same as the flux b) Curl of D is same as the current c) Divergence of E is zero d) Curl of H is same as the current density

Last Answer : d) Curl of H is same as the current density

Description : In metals which of the following equation will hold good? a) Curl(H) = J b) Curl(J) = dD/dt c) Curl(H) = D d) Curl(J) = dB/dt

Last Answer : a) Curl(H) = J

Description : Which of the following relation will hold good? a) D = μ H b) B = ε E c) E = ε D d) B = μ H

Last Answer : d) B = μ H

Description : Find the curl of E when B is given as 15t. a) 15 b) -15 c) 7.5 d) -7.5

Last Answer : b) -15

Description : For static fields, the curl of E will be a) Rotational b) Irrotational c) Solenoidal d) Divergent

Last Answer : b) Irrotational

Description : The charge density of a electrostatic field is given by a) Curl of E b) Divergence of E c) Curl of D d) Divergence of D

Last Answer : d) Divergence of D

Description : Find the curl of A = (y cos ax)i + (y + e x )k a) 2i – ex j – cos ax k b) i – ex j – cos ax k c) 2i – ex j + cos ax k d) i – ex j + cos ax k

Last Answer : b) i – ex j – cos ax k

Description : The sequence for finding H from E is a) E-B-H b) E-V-H c) E-D-H d) E-A-H

Last Answer : a) E-B-H

Description : Find the sequence to find B when E is given. a) E-D-H-B b) B-E-D c) H-B-E-D d) V-E-B

Last Answer : a) E-D-H-B

Description : The sequence for finding E when charge density is given is a) E-D-ρv b) E-B-ρv c) E-H-ρv d) E-V-ρv

Last Answer : a) E-D-ρv

Description : The H quantity is analogous to which component in the following? a) B b) D c) E d) V

Last Answer : c) E

Description : The non existence of the magnetic monopole is due to which operation? a) Gradient b) Divergence c) Curl d) Laplacian

Last Answer : b) Divergence

Description : In a medium other than air, the electric flux density will be a) Solenoidal b) Curl free c) Irrotational d) Divergent

Last Answer : d) Divergent

Description : The total current density is given as 0.5i + j – 1.5k units. Find the curl of the magnetic field intensity. a) 0.5i – 0.5j + 0.5k b) 0.5i + j -1.5k c) i – j + k d) i + j – k

Last Answer : b) 0.5i + j -1.5k

Description : The curl of the electric field intensity is a) Conservative b) Rotational c) Divergent d) Static

Last Answer : b) Rotational

Description : When curl of a path is zero, the field is said to be conservative. State True/False. a) True b) False

Last Answer : a) True

Description : Gauss theorem uses which of the following operations? a) Gradient b) Curl c) Divergence d) Laplacian

Last Answer : c) Divergence

Description : The Stoke’s theorem can be used to find which of the following? a) Area enclosed by a function in the given region b) Volume enclosed by a function in the given region c) Linear distance d) Curl of the function

Last Answer : a) Area enclosed by a function in the given region

Description : Find the value of Stoke’s theorem for A = x i + y j + z k. The state of the function will be a) Solenoidal b) Divergent c) Rotational d) Curl free

Last Answer : d) Curl free

Description : The Stoke’s theorem uses which of the following operation? a) Divergence b) Gradient c) Curl d) Laplacian

Last Answer : c) Curl

Description : Which of the following Maxwell equations use curl operation? a) Maxwell 1st and 2nd equation b) Maxwell 3rd and 4th equation c) All the four equations d) None of the equations

Last Answer : a) Maxwell 1st and 2nd equation

Description : Curl cannot be employed in which one of the following? a) Directional coupler b) Magic Tee c) Isolator and Terminator d) Waveguides

Last Answer : d) Waveguides

Description : Find the curl of the vector A = yz i + 4xy j + y k a) xi + j + (4y – z)k b) xi + yj + (z – 4y)k c) i + j + (4y – z)k d) i + yj + (4y – z)k

Last Answer : d) i + yj + (4y – z)k

Description : Find the curl of the vector and state its nature at (1,1,-0.2) F = 30 i + 2xy j + 5xz 2 k a) √4.01 b) √4.02 c) √4.03 d) √4.04

Last Answer : d) √4.04

Description : The curl of a curl of a vector gives a a) Scalar b) Vector c) Zero value d) Non zero value

Last Answer : b) Vector

Description : Which of the following theorem use the curl operation? a) Green’s theorem b) Gauss Divergence theorem c) Stoke’s theorem d) Maxwell equation

Last Answer : b) Gauss Divergence theorem

Description : Curl is defined as the angular velocity at every point of the vector field. State True/False. a) True b) False

Last Answer : a) True

Description : Identify the nature of the field, if the divergence is zero and curl is also zero. a) Solenoidal, irrotational b) Divergent, rotational c) Solenoidal, irrotational d) Divergent, rotational

Last Answer : c) Solenoidal, irrotational

Description : Curl of gradient of a vector is a) Unity b) Zero c) Null vector d) Depends on the constants of the vector

Last Answer : c) Null vector

Description : Divergence of gradient of a vector function is equivalent to a) Laplacian operation b) Curl operation c) Double gradient operation d) Null vector

Last Answer : a) Laplacian operation

Description : The magnetic field intensity is said to be a) Divergent b) Curl free c) Solenoidal d) Rotational

Last Answer : c) Solenoidal

Description : A vector is said to be solenoidal when its a) Divergence is zero b) Divergence is unity c) Curl is zero d) Curl is unity

Last Answer : a) Divergence is zero

Description : The curl of gradient of a vector is non-zero. State True or False. a) True b) False

Last Answer : b) False