Which type of flux will increase the inductance?
a) Series aiding
b) Series opposing
c) Shunt aiding
d) Shunt opposing

1 Answer

Answer :

a) Series aiding

Related questions

Description : The flux lines of two energised coils overlapping on each other will give a) Series aiding b) Shunt aiding c) Series opposing d) Shunt opposing

Last Answer : a) Series aiding

Description : The equivalent inductances of two coils 2H and 5H in series aiding flux with mutual inductance of 3H is a) 10 b) 30 c) 1 d) 13

Last Answer : d) 13

Description : The equivalent inductance of two coils with series opposing flux having inductances 7H and 2H with a mutual inductance of 1H. a) 10 b) 7 c) 11 d) 13

Last Answer : b) 7

Description : The inductance is proportional to the ratio of flux to current. State True/False. a) True b) False

Last Answer : a) True

Description : The expression for the inductance in terms of turns, flux and current is given by a) L = N dφ/di b) L = -N dφ/di c) L = Niφ d) L = Nφ/i

Last Answer : a) L = N dφ/di

Description : Find the time constant in a series R-L circuit when the resistance is 4 ohm and the inductance is 2 H. a) 0.25 b) 0.2 c) 2 d) 0.5

Last Answer : d) 0.5

Description : When currents are moving in the same direction in two conductors, then the force will be a) Attractive b) Repulsive c) Retracting\ d) Opposing

Last Answer : a) Attractive

Description : Capacitance is the property of an electric circuit opposing a change in the _____________. A. current in the circuit B. voltage in the circuit C. inductance in the circuit D. resistance in the circuit

Last Answer : Answer: B

Description : The resistance in a magnetic material is called as a) Capacitance b) Inductance c) Reluctance d) Magnetic resistance

Last Answer : c) Reluctance

Description : The inductance of a coaxial cable with inner radius a and outer radius b, from a distance d, is given by a) L = μd ln(b/a)/2π b) L = 2π μd ln(b/a) c) L = πd/ln(b/a) d) L = 0

Last Answer : a) L = μd ln(b/a)/2π

Description : Calculate the mutual inductance of two tightly coupled coils with inductances 49H and 9H. a) 21 b) 58 c) 40 d) 49/9

Last Answer : a) 21

Description : Inductance is present in semiconductor. State True/False. a) True b) False

Last Answer : b) False

Description : Find the energy of a coil of inductance 18mH and current passing through it 1.25A.(in 10 -3 order) a) 14.06 b) 61 c) 46.1 d) 28.12

Last Answer : a) 14.06

Description : The inductance is the measure of a) Electric charges stored by the material b) Emf generated by energising the coil c) Magnetic field stored by the material d) Magnetization of dipoles

Last Answer : c) Magnetic field stored by the material

Description : The magnetostatics highly relies on which property? a) Resistance b) Capacitance c) Inductance d) Moment

Last Answer : c) Inductance

Description : Find the turns in an solenoid of inductance 23.4mH , current 2A and area 15cm. a) 900 b) 400 c) 498 d) 658

Last Answer : c) 498

Description : Find the inductance when the energy is given by 2 units with a current of 16A. a) 15.6mH b) 16.5mH c) 16.8mH d) 15.8mH

Last Answer : a) 15.6mH

Description : Find the inductance of a material with 100 turns, area 12 units and current of 2A in air. a) 0.75mH b) 7.5mH c) 75mH d) 753mH

Last Answer : a) 0.75mH

Description : Find the inductance of a coil with permeability 3.5, turns 100 and length 2m. Assume the area to be thrice the length. a) 131.94mH b) 94.131mH c) 131.94H d) 94.131H

Last Answer : a) 131.94mH

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The electric field intensity of a field with velocity 10m/s and flux density of 2.8 units is a) 0.28 b) 28 c) 280 d) 10/2.8

Last Answer : b) 28

Description : Find the emf induced in a coil of 60 turns with a flux rate of 3 units. a) -60 b) -180 c) 60 d) 180

Last Answer : b) -180

Description : Calculate the emf in a material with flux linkage of 3.5t 2 at 2 seconds. a) 3.5 b) -7 c) -14 d) 28

Last Answer : c) -14

Description : Which quantity is solenoidal in the electromagnetic theory? a) Electric field intensity b) Electric flux density c) Magnetic field intensit d) Magnetic flux density

Last Answer : d) Magnetic flux density

Description : The charge density of a system with the position vector as electric flux density is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the electric flux density of a material whose charge density is given by 12 units in a volume region of 0.5 units. a) 12 b) 24 c) 6 d) 48

Last Answer : c) 6

Description : In a medium other than air, the electric flux density will be a) Solenoidal b) Curl free c) Irrotational d) Divergent

Last Answer : d) Divergent

Description : In the medium of free space, the divergence of the electric flux density will be a) 1 b) 0 c) -1 d) Infinity

Last Answer : b) 0

Description : Find the displacement current density of a material with flux density of 5sin t a) 2.5cos t b) 2.5sin t c) 5cos t d) 5sin t

Last Answer : c) 5cos t

Description : Calculate the emf of a material having flux density 5sin t in an area of 0.5 units. a) 2.5 sin t b) -2.5 cos t c) -5 sin t d) 5 cos t

Last Answer : d) 5 cos t

Description : Calculate the emf of a material having a flux linkage of 2t 2 at time t = 1second. a) 2 b) 4 c) 8 d) 16

Last Answer : b) 4

Description : Find the electric field applied on a system with electrons having a velocity 5m/s subjected to a magnetic flux of 3.6 units. a) 15 b) 18 c) 1.38 d) 0.72

Last Answer : b) 18

Description : Calculate the reluctance of the material with a mmf of 3.5 units and flux of 7units. a) 32.5 b) 10.5 c) 0.5 d) 2

Last Answer : b) 10.5

Description : The induced emf in a material opposes the flux producing it. This is a) Faraday law b) Ampere law c) Lenz law d) Curie law

Last Answer : c) Lenz law

Description : Calculate the emf of a coil with turns 100 and flux rate 5 units. a) 20 b) -20 c) 500 d) -500

Last Answer : d) -500

Description : The line integral of the magnetic field intensity is the a) Current density b) Current c) Magnetic flux density d) Magnetic moment

Last Answer : b) Current

Description : The flux density of medium 1 has a normal component of 2.4 units, then the normal component of the flux density in the medium 2 will be a) 1.2 b) 4.8 c) 2.4 d) 0

Last Answer : c) 2.4

Description : In air, the tangential component of flux density is continuous at the boundary. State True/False. a) True b) False

Last Answer : a) True

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Find the Lorentz force due to a conductor of length 2m carrying a current of 1.5A and magnetic flux density of 12 units. a) 24 b) 36 c) 32 d) 45

Last Answer : c) 32

Description : Calculate the Larmer angular frequency for a magnetic flux density of 12.34 x 10 -10 . a) 108.36 b) 810.63 c) 368.81 d) 183.36

Last Answer : a) 108.36

Description : The magnetization is defined by the ratio of a) Magnetic moment to area b) Magnetic moment to volume c) Magnetic flux density to area d) Magnetic flux density to volume

Last Answer : b) Magnetic moment to volume

Description : Find the torque of a loop with magnetic moment 12.5 and magnetic flux density 7.65 units is a) 95.625 b) 65.925 c) 56.525 d) 65.235

Last Answer : a) 95.625

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2

Description : The torque on a conductor with flux density 23 units, current 1.6A and area 6.75 units will be a) 248.4 b) 192.6 c) 175.4 d) 256.9

Last Answer : a) 248.4

Description : Find the maximum force of the conductor having length 60cm, current 2.75A and flux density of 9 units. a) 14.85 b) 18.54 c) 84.25 d) 7.256

Last Answer : a) 14.85

Description : Find the flux density due to a conductor of length 6m and carrying a current of 3A(in 10 -7 order) a) 1 b) 10 c) 100 d) 0.1

Last Answer : a) 1

Description : The force on a conductor of length 12cm having current 8A and flux density 3.75 units at an angle of 300 is a) 1.6 b) 2 c) 1.4 d) 1.8

Last Answer : d) 1.8

Description : Find the electric field when the velocity of the field is 12m/s and the flux density is 8.75 units. a) 510 b) 105 c) 150 d) 165

Last Answer : b) 105