Which among the following is the value of static deflection (δ) for a fixed
beam with central point load?
a. (Wl 3 ) /(192 EI)
b. (Wl 2 ) /(192 EI)
c. (Wl 3 ) /(384 EI)

1 Answer

Answer :

a. (Wl 3 ) /(192 EI)

Related questions

Description : Which among the following is the value of static deflection (δ) for a fixed beam with central point load? A ( Wl 3 ) /(192 EI) B ( Wl 2 ) /(192 EI) C (Wl 3 ) /(384 EI) D None of the above

Last Answer : A ( Wl 3 ) /(192 EI)

Description : δ = (W a 2 b 2 ) / (3 EIL) is the value of deflection for ______ A. simply supported beam which has central point load B. simply supported beam which has eccentric point load C. simply supported beam which has U.D.L. point load per unit length D. fixed beam which has central point load

Last Answer : B. simply supported beam which has eccentric point load

Description : δ = (W a 2 b 2 ) / (3 EIl) is the value of deflection for ______ a. simply supported beam which has central point load b. simply supported beam which has eccentric point load c. simply supported beam which has U.D.L. point load per unit length d. fixed beam which has central point load

Last Answer : b. simply supported beam which has eccentric point load

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : The maximum deflection of a simply supported beam of span L, carrying an isolated load at the  centre of the span; flexural rigidity being EI, is  (A) WL3 /3EL (B) WL3 /8EL (C) WL3 /24EL (D) WL3 /48EL

Last Answer : (D) WL3 /48EL

Description : Magnification factor is the ratio of the maximum displacement due to forced vibrations to the deflection due to _______ A Static force B Dynamic force C Torsion D Compression

Last Answer : A Static force

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : A cantilever shaft having 50 mm diameter and a length of 300mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m^2. Determine the static deflection of shaft in mm. A 0.144 B 0.244 C 0.344 D 0.444

Last Answer : A 0.144

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as A Logarithmic decrement B Magnification factor C Damping factor D None of the mentioned

Last Answer : B Magnification factor

Description : From above numerical find the static deflection A 0.0245 mm B 0.0025 mm C 0.0245 m D 0.0245 cm

Last Answer : C 0.0245 m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : If the static deflection is 1.665×10 -3 m, calculate the critical speed of the shaft in rps. Centre of disc at 0.25m away from centre of axis of shaft. A. 8.64 B. 9.64 C. 10.64 D. 12.2

Last Answer : D. 12.2

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. A. 6.21 B. 0.621 C. 62.1 D. 0.006

Last Answer : A. 6.21

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Transmissibility in a force excitation system is defined by the ratio of the A) Maximum excitation force to the force transmitted to the foundation B) Force transmitted to the foundation, to the maximum ... Maximum static deflection of the ass to the deflection of the foundation D) None of the above

Last Answer : B) Force transmitted to the foundation, to the maximum excitation force

Description : A mass of 10 kg when suspended from a spring causes a static deflection of A 0.01m. Find the spring stiffness for the same system. (A) 9810 N/m (B) 8910 N/m (C)1098 N/m (D) 9801 N/m

Last Answer : A) 9810 N/m

Description : The ratio of maximum displacement of the forced vibration to the deflection due to the static force, is known as A. Damping FactorB. Damping Coefficient C. Logarithmic Decrement D. Magnification Factor

Last Answer : D. Magnification Factor

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) Damping factor b) Damping coefficient c) Logarithmic decrement d) Magnification factor

Last Answer : d) Magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as (A) damping factor (B) damping coefficient (C) logarithmic decrement (D) magnification factor

Last Answer : (D) magnification factor

Description : Maximum displacement due to forced vibration is dependent on deflection due to static force. a) True b) False

Last Answer : a) True

Description : Magnification factor is the ratio of the maximum displacement due to forced vibrations to the deflection due to _______ a) Static force b) Dynamic force c) Torsion d) Compression

Last Answer : a) Static force

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. a) 6 b) 0.6 c) 60 d) 0.006

Last Answer : a) 6

Description : Calculate the natural frequency of transverse vibrations if the static deflection is 0.01mm. a) 157.6 b) 144.8 c) 173.2 d) 154.1

Last Answer : a) 157.6

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 3 . Determine the static deflection of the shaft in mm. a) 0.147 b) 0.213 c) 0.132 d) 0.112

Last Answer : a) 0.147

Description : Static deflection and frequency are independent of each other. a) True b) False

Last Answer : b) False

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) damping factor b) damping coefficient c) logarithmic decrement d) magnification factor

Last Answer : d) magnification factor

Description : For a fixed beam with midpoint load point, maximum deflection at the centre is a.PL3/ 192EI b.PL2/ 48EI c.PL4/ 192EI d.PL3/ 48EI

Last Answer : a.PL3/ 192EI

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : A uniform girder simply supported at its ends is subjected to a uniformly distributed load over its entire length and is propped at the centre so as to neutralise the deflection. The net B.M. at the centre will be (A) WL (B) WL/8 (C) WL/24 (D) WL/32

Last Answer : (D) WL/32

Description : Shear deflection of a cantilever of length L, cross sectional area A and shear modulus G, under a concentrated load W at its free end, is (A) (2/3) (WL/AG) (B) (1/3) (WL²/EIA) (C) (3/2) (WL/AG) (D) (3/2) (WL²/AG

Last Answer : (C) (3/2) (WL/AG

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : Calculate the free torsional vibrations of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , J = 8×10 4 m 4 a) 162,132 b) 172,132 c) 182,132 d) 192,132

Last Answer : b) 172,132

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) 1/2π√s/m b) 1/2π√g/δ c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : A pre-stressed rectangular beam which carries two concentrated loads W at L/3 from either end, is provided with a bent tendon with tension P such that central one-third portion of the tendon remains parallel to the longitudinal axis, the maximum dip h is (A) WL/P (B) WL/2P (C) WL/3P (D) WL/4P

Last Answer : Answer: Option C

Description : The strain energy (E) stored in the spring is given by Where P=Load and δ = deflection of spring (A) Pδ/2 (B) 2Pδ (C) Pδ/3 (D) Pδ/4

Last Answer : (A) Pδ/2

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8