For a simply supported beam of span L, with point load W at the centre, the maximum
B.M. will be
(a) WL
(b) WL/2
(c) WL/4
(d) WL/8

1 Answer

Answer :

(c) WL/4

Related questions

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : The maximum deflection of a simply supported beam of span L, carrying an isolated load at the  centre of the span; flexural rigidity being EI, is  (A) WL3 /3EL (B) WL3 /8EL (C) WL3 /24EL (D) WL3 /48EL

Last Answer : (D) WL3 /48EL

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : A simply supported beam carries two equal concentrated loads W at distances L/3 from either support. The maximum bending moment (A) WL/3 (B) WL/4 (C) 5WL/4 (D) 3WL/12

Last Answer : (A) WL/3

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : What is the distance away from midspan of a plastic hinge if developing in a simply supported beam of rectangular cross-section and span 6 m, subjected to a point load at the centre? (a) Zero (b) 1 m (c) 2 m (d) 3 m

Last Answer : (a) Zero

Description : The section modulus of a rectangular light beam 25 metres long is 12.500 cm3 . The beam is simply supported at its ends and carries a longitudinal axial tensile load of 10 tonnes in addition to a point load of ... 13.33 kg/cm2 compressive (C) 26.67 kg/cm2 tensile (D) 26.67 kg/cm2 compressive

Last Answer : (C) 26.67 kg/cm2 tensile

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : For a simply supported beam, loaded with point load, the B.M.D. will be (a) A triangle (b) A parabolic curve (c) A cubic curve (d) None of these

Last Answer : a) A triangle

Description : A uniform girder simply supported at its ends is subjected to a uniformly distributed load over its entire length and is propped at the centre so as to neutralise the deflection. The net B.M. at the centre will be (A) WL (B) WL/8 (C) WL/24 (D) WL/32

Last Answer : (D) WL/32

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : In case of a simply supported rectangular beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (B) L/3 

Description : In case of a simply supported I-section beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (D) L/5 

Description : A simply supported beam A carries a point load at its mid span. Another identical beam B carries  the same load but uniformly distributed over the entire span. The ratio of the maximum  deflections of the beams A and B, will be  (A) 2/3  (B) 3/2  (C) 5/8  (D) 8/5 

Last Answer : (D) 8/5 

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : Which of the following statements is/are true for a simply supported beam? a. Deflection at supports in a simply supported beam is maximum. b.Deflection is maximum at a point where slope is zero . c. Slope is minimum at supports in a simply supported beam. d. All of the above

Last Answer : b.Deflection is maximum at a point where slope is zero .

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : A simply supported beam AB is subjected to a concentrated load at C, the centre of the span. The area of the SF diagram from A to C will give a) BM at C b) Load at S c) SF at C d)Difference between BM values at A and C

Last Answer : d)Difference between BM values at A and C

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : A cantilever beam of span 3m carries a point load 100 N at the free end. The maximum B.M in the beam will be (a) 100 N-m (b) 300 N-m (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N-m

Description : If a bent tendon is required to balance a concentrated load W at the centre of the span L, the central dip h must be at least (A) WL/P (B) WL/2P (C) WL/3P (D) WL/4P

Last Answer : Answer: Option D

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : The ratio of the length and diameter of a simply supported uniform circular beam which  experiences maximum bending stress equal to tensile stress due to same load at its mid span, is  (A) 1/8  (B) 1/4  (C) 1/2  (D) 1/3 

Last Answer : (C) 1/2 

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. at the left hand support. b.at the right support. c. at the centre. d.none.

Last Answer : c. at the centre.

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : If the length of a wall on either side of a lintel opening is at least half of its effective span L, the load W carried by the lintel is equivalent to the weight of brickwork contained in an equilateral triangle, producing a maximum bending moment (A) WL/2 (B) WL/4 (C) WL/6 (D) WL/8

Last Answer : Answer: Option C

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is 10 kg/cm2 , the length of the beam having nominal reinforcement, is (A) 8 cm (B) 6 m (C) 8 m (D) 10 m

Last Answer : Answer: Option C

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : At the supports of a simply supported beam, shear forces will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : At the supports of a simply supported beam, bending moment will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (c) Zero

Description : The maximum deflection of a simply supported beam of length L with a central load W, is (A) WL²/48EI (B) W²L/24EI (C) WL3 /48EI (D) WL²/8EI

Last Answer : (C) WL3 /48EI

Description : Deflection underthe load in a S.S beam with W not at the centre will be a.4Wa2b2/ 3EI l . b.2Wa2b2/3EIl. c.Wa2 b2/ 3EIL. d.None.

Last Answer : c.Wa2 b2/ 3EIL.