Damped natural frequency of a system with ωn =100 Hz and ς = 20% is given by
A) 92 Hz
B) 94 Hz
C) 96 Hz
D) 98 Hz

1 Answer

Answer :

D) 98 Hz

Related questions

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The response of a damped forced vibration system A) Leads the system excitation ( for all values of ω/ ωn) B) Lags the system excitation ( for all values of ω/ ωn) C) Leads the system excitation ( for all values of ω/ ωn

Last Answer : B) Lags the system excitation ( for all values of ω/ ωn)

Description : The natural frequency of torsional vibration is given by A) ωn = (-kt)/I B) ωn = kt/I C) ωn = √(kt/I) D) ωn = √(2&kt/I)

Last Answer : C) ωn = √(kt/I)

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and A natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. ( A )25.62 rad/sec ( B )20.78 rad/sec ( C )14.4 rad/sec ( D )15.33 rad/sec

Last Answer : ( A )25.62 rad/sec

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequ the system is 30 rad/sec which consists of machine supported on springs and dashpots. a. 25.62 rad/secb. 20.78 rad/sec c. 14.4 rad/sec d. 15.33 rad/sec

Last Answer : a. 25.62 rad/sec

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : In damped free vibrations, which parameters indicate vibrations? A) Natural frequency B) Rate of decay of amplitude C) Both a. and b. D) None of the above

Last Answer : C) Both a. and b.

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : In damped free vibrations, which parameters indicate vibrations? a. Natural frequency b. Rate of decay of amplitude c. Both a. and b. d. None of the above

Last Answer : c. Both a. and b.

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : If total income of company B in 2008 was Rs.140 crore, what was the total expenditure of that company in the same year? (approx) a) Rs.100.66 cr. b) Rs.110.33 cr. c) Rs.98.22 cr. d) Rs.94.90 cr. e) Rs.96.55 cr.

Last Answer : e) Rs.96.55 cr.

Description : A mass of 1 kg is attached to two identical springs each with stiffness k = 20 kN/m as shown in the figure. Under frictionless condition, the natural frequency of the system in Hz is close to * 1 point (A) 32 (B) 23 (C) 16 (D) 11

Last Answer : (A) 32

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz

Description : In semi definite system, one of the natural frequencies is found to 15 Hz. The other natural frequency will be A. 15 Hz B. 0 Hz C. 30 Hz D. None of these

Last Answer : B. 0 Hz

Description : The external exciting frequency of the system having natural frequency 15 Hz is 10 Hz. The frequency ratio will be A. 1.500 B. 0.667 C. 0.150 D. None

Last Answer : B. 0.667

Description : A 10 Kg mass suspended by spring of stiffness 1000 N/m. the natural frequency of the system after giving excitation will be A. 0 Hz B. 1.59 Hz C. 2 Hz D. 15.9 Hz

Last Answer : B. 1.59 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m mass of 20 kg? a. 12.32 Hz b. 4.10 Hz c. 6.16 Hz d. None of the above

Last Answer : c. 6.16 Hz

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. (A) 5.14 Hz (B) 9.14 Hz (C) 11.14 Hz (D) 28.14 Hz

Last Answer : (C) 11.14 Hz

Description : In vibration isolation system, if ω/ωn, then the phase difference between the transmitted force and the disturbing force is A 0° B 90° C 180° D 270°

Last Answer : C 180°

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : The condition to be fulfilled in the design of spring for vibration isolation of a system where excitation is due to a rotating unbalance is A) ω ωn D) ω >> ωn

Last Answer : A) ω

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. Determine the natural frequency of the car in vertical direction. A 5 Hz B 4.67 Hz C 9.8 Hz D 2.49 Hz

Last Answer : D 2.49 Hz

Description : A 1 kg mass is suspended by a spring having a stiffness of 0.4 N/mm. Determine the natural frequency. A 20 rad/sec B 30 rad/sec C 20 Hz D 30 Hz

Last Answer : B 30 rad/sec

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. Determine the natural frequency of the car in vertical direction. A 5 HzB 4.67 Hz C 9.8 Hz D 2.49 Hz

Last Answer : D 2.49 Hz

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. D Determine the natural frequency of the car in vertical direction. (A)5 Hz (B) 4.67 Hz (C) 9.8 Hz (D) 2.49 Hz

Last Answer : (D) 2.49 Hz

Description : The unit of natural frequency is A. Rad/sec B. Hz C. Both D. No unit

Last Answer : C. Both

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : f the mass is of 10 Kg, find the natural frequency in Hz of the free longitudinal vibrations. The displacement is 0.01mm. a) 44.14 b) 49.85 c) 43.43 d) 46.34

Last Answer : b) 49.85

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 20 Hz. a) 0.1 b) 0.2 c) 0.5 d) 0.6

Last Answer : d) 0.6

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 15 Hz. a) 1.1 b) 1.2 c) 1.5 d) 1.6

Last Answer : a) 1.1

Description : Find the natural frequency in Hz of the free longitudinal vibrations if the displacement is 2mm. a) 11.14 b) 12.38 c) 11.43 d) 11.34

Last Answer : a) 11.14

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) 1/2π√s/m b) 1/2π√g/δ c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.