Which of the following parameters of the fluid is not very important,
while deciding its route in a shell and tube heat exchanger?
(A) Corrosiveness & fouling characteristics
(B) Pressure
(C) Viscosity
(D) Density

1 Answer

Answer :

(D) Density

Related questions

Description : Which characteristic of a fluid is not important in deciding its route in a shell and tube heat exchanger? (A) Corrosiveness (B) Fouling characteristic (C) Viscosity (D) None of these

Last Answer : (D) None of these

Description : Shell side pressure drop in a shell and tube heat exchanger does not depend upon the (A) Baffle spacing & shell diameter (B) Tube diameter & pitch (C) Viscosity, density & mass velocity of shell side fluid (D) None of these

Last Answer : (D) None of these

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : Baffles provided on the shell side of a shell and tube heat exchanger are meant for (A) Providing support for the tubes (B) Improving heat transfer (C) Both 'a' & 'b' (D) Preventing the fouling of tubes & stagnation of shell side fluid

Last Answer : C) Both 'a' & 'b'

Description : Fouling factor' used in the design of a multipass shell and tube heat exchanger is a (A) Non-dimensional factor (B) Factor of safety

Last Answer : (B) Factor of safety

Description : Which is the best tube arrangement (in a shell and tube heat exchanger) if the fluids are clean and non-fouling? (A) Square pitch (B) Triangular pitch (C) Diagonal square pitch chemical-engineering

Last Answer : (B) Triangular pitch

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : Pick out the wrong statement. (A) Heat transfer by radiation cannot occur across an absolute volume (B) In case of a shell and tube heat exchanger, the pressure drop through the shell is ... The amount of heat involved in the condensation or vaporisation of 1 kg of a fluid is the same

Last Answer : (A) Heat transfer by radiation cannot occur across an absolute volume

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2 .°C. Condensation of vapor is carried out inside the tube in a shell and tube heat ... drop through the exchanger is desired (D) Temperature of the incoming vapor is very high

Last Answer : (B) Supersaturated

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : __________ heat exchanger is the most suitable, when the temperature of shell side fluid is much higher than that of tube side. (A) Single pass, fixed tube sheet (B) U-tube (C) Three pass, fixed tube sheet (D) None of these

Last Answer : (B) U-tube

Description : If the baffle spacing in a shell and tube heat exchanger increases, then the Reynolds number of the shell side fluid (A) Remains unchanged (B) Increases (C) Increases or decreases depending on number of shell passes (D) Decreases

Last Answer : (D) Decreases

Description : Vibrations in the tubes of a shell and tube heat exchanger is induced due to the (A) Flow of fluid on the tube and shell sides (B) Oscillations in the flow of shell/tube sides fluid (C) Vibrations ... piping and/or supports due to external reasons (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In a shell and tube heat exchanger, the shell side fluid velocity can’t be changed by changing the (A) Tube layout (B) Tube diameter (C) Tube pitch (D) Number of baffles

Last Answer : (B) Tube diameter

Description : In case of a multipass shell and tube heat exchanger, the temperature drop in the fluid (A) Is inversely proportional to the resistance across which the drop occurs (B) And the wall are proportional to individual resistances (C) And the wall is not related (D) None of these

Last Answer : (B) And the wall are proportional to individual resistances

Description : In a shell and tube heat exchanger, putting a longitudinal baffle across the shell, forces the shell side fluid to pass __________ through the heat exchanger. (A) Once (B) Twice (C) Thrice (D) Four times

Last Answer : (B) Twice

Description : Use of transverse baffles in a shell and tube heat exchanger is done to increase the (A) Rate of heat transfer (B) Flow velocity (C) Turbulence of shell side fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In a gas-liquid shell and tube heat exchanger, the (A) Presence of a non-condensable gas decreases the condensing film co￾efficient (B) Gases under high pressure are routed through the tube side, because high pressure ... water or steam condensate remain localised to the tubes (D) All 'a', 'b' & 'c'

Last Answer : (D) All 'a', 'b' & 'c'

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : The overall heat transfer co-efficient for a shell and tube heat exchangerfor clean surfaces is U0 = 400 W/m2 .K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2 .K. The overall heat transfer co￾efficient ... 1200 W/m2 .K (B) 894 W/m2 .K (C) 333 W/m2 .K (D) 287 W/m2 .K

Last Answer : (C) 333 W/m2 .K

Description : In an extended surface heat exchanger, fluid having lower co-efficient (A) Flows through the tube (B) Flows outside the tubes (C) Can flow either inside or outside the tubes (D) Should not be used as it gives very high pressure drop

Last Answer : (B) Flows outside the tubes

Description : The main function of baffles provided in a shell and tube heat exchanger is to (A) Facilitate the cleaning of outer tube surface (B) Enhance turbulence (C) Hold the tubes in position (D) All 'a', 'b' & 'c'

Last Answer : (B) Enhance turbulence

Description : For a multipass shell and tube heat exchanger, the LMTD correction factor is always (A) 1 (B) > 1 (C) < 1 (D) Between 1 & 2

Last Answer : (C) < 1

Description : In a multipass shell and tube heat exchanger, tube side return pressure loss is equal to __________ the velocity head. (A) Twice (B) Four times (C) Square root of (D) Square of

Last Answer : (B) Four times

Description : Pick out the wrong statement: (A) The capacity of an evaporator is reduced by the boiling point elevation (B) Corrosive liquid is normally passed through the tubes in a ... recompression evaporator (D) Heat sensitive materials should be concentrated in high pressure evaporators

Last Answer : (D) Heat sensitive materials should be concentrated in high pressure evaporators

Description : Pick out the wrong statement. (A) Orifice baffles are never used in a shell and tube heat exchanger (B) Pressure drop on the shell side of a heat exchanger depends upon tube pitch also

Last Answer : (A) Orifice baffles are never used in a shell and tube heat exchanger

Description : In a shell and tube heat exchanger, square pitch compared to triangular pitch (A) Gives a higher shell side pressure drop (B) Gives a lower shell side pressure drop (C) Can pack more surface area into a shell of given diameter (D) None of these

Last Answer : (A) Gives a higher shell side pressure drop

Description : The advantage of using a 1 - 2 shell and tube heat exchanger over a 1 - 1 shell and tube heat exchanger is (A) Lower tube side pressure drop (B) Lower shell side pressure drop (C) Higher tube side heat transfer co-efficient (D) Higher shell side heat transfer co-efficient

Last Answer : (C) Higher tube side heat transfer co-efficient

Description : Extremely large or small volumes of fluids are generally best routed through the shell side of a shell and tube heat exchanger, because of the (A) Less corrosion problems (B) Flexibility possible in the baffle arrangement (C) Low pressure drop (D) High heat transfer co-efficient

Last Answer : (B) Flexibility possible in the baffle arrangement

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : For the same heat load and mass flow rate in the tube side of a shell and tube heat exchanger, one may use multipass on the tube side, because it (A) Decreases the pressure drop (B) ... the outlet temperature of cooling medium (C) Increases the overall heat transfer coefficient (D) None of these

Last Answer : (C) Increases the overall heat transfer coefficient

Description : Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface). (A) U1 - U2 (B) 1/U1 - 1/U2 (C) 1/U2 - 1/U1 (D) U2 - U1

Last Answer : (B) 1/U1 - 1/U2

Description : In a shell and tube type heat exchanger, the floating tube bundle heat arrangement is used (A) In low range of temperature differences (B) In high range of temperature differences (C) Because of its low cost (D) To prevent corrosion of the tube bundles

Last Answer : (B) In high range of temperature differences

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : In case of a multipass shell and tube heat exchanger, providing a baffle on the shell side __________ the heat transfer rate. (A) Increases (B) Decreases (C) Does not affect (D) May increase or decrease, depends on the type of baffle

Last Answer : (A) Increases

Description : Which type of heat exchanger is preferred for heavy heat loads? (A) Double pipe (B) Plate fine (C) Series and parallel set of shell and tube (D) None of these

Last Answer : (C) Series and parallel set of shell and tube

Description : In a shell and tube heat exchanger, the height of 25 percent cut baffles is equal to (where, D = inside diameter of shell). (A) 0.25 D (B) 0.50 D (C) 0.75 D

Last Answer : (C) 0.75 D

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : For shell and tube heat exchanger, with increasing heat transfer area, the purchased cost per unit heat transfer area (A) Increases (B) Decreases (C) Remain constant (D) Passes through a maxima

Last Answer : (D) Passes through a maxima

Description : Air is best heated with steam in a heat exchanger of (A) Plate type (B) Double pipe type with fin on steam side (C) Double pipe type with fin on air side (D) Shell and tube type

Last Answer : (C) Double pipe type with fin on air side

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : In case of a shell and tube heat exchanger, the minimum and maximum baffle spacing is respectively (where, D = inside diameter of the shell) (A) D/5 and D (B) D/2 and 2 D (C) D/4 and 2 D (D) D and 2 D

Last Answer : (A) D/5 and D

Description : Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both ... steam on shell side (D) Shell and tube heat exchanger with air on shell side and steam inside tubes

Last Answer : (B) Finned tube heat exchanger with air outside and steam inside

Description : A process stream of dilute aqueous solution flowing at the rate of10 Kg.s -1 is to be heated. Steam condensate at 95°C is available for heating purpose, also at a rate of 10 Kg.s -1 . A 1 ... side (C) Parallel flow with process stream on shell side (D) Parallel flow with process stream on tube side

Last Answer : (A) Counter flow with process stream on shell side

Description : For large heat transfer area requirement, shell and tube heat exchanger is preferred, because it (A) Occupies smaller space (B) Is more economical (C) Is easy to operate and maintain (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Minimum recommended baffle spacing in a shell and tube heat exchanger is about (where, D = shell diameter). (A) 0.2 D (B) 0.5 D (C) 0.66 D (D) 0.80 D

Last Answer : (A) 0.2 D

Description : It is not recommended to use a 1-2 shell and tube heat exchanger for a particular heat duty, whenever the LMTD correction factor is (A) > 0.75 (B) < 0.75 (C) < 0.50 (D) < 0.25

Last Answer : (B) < 0.75

Description : The ratio of velocity head to tube side return loss in case of a multipass shell and tube heat exchanger is (A) 2 (B) 1/2 (C) 4 (D) 1/4

Last Answer : (D) 1/4