Fouling factor for a heat exchanger is given by (where, U1 = heat
transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean
surface).
(A) U1
- U2
(B) 1/U1
- 1/U2
(C) 1/U2
- 1/U1
(D) U2
- U1

1 Answer

Answer :

(B) 1/U1
- 1/U2

Related questions

Description : Overall heat transfer co-efficient of a particular tube is U1 . If the same tube with some dirt deposited on either side has coefficient U2 , then (A) U1 = U2 (B) U2 > U1 (C) U1 > U2 (D) U1 = dirt factor - U2

Last Answer : (A) U1 = U2

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : The overall heat transfer co-efficient for a shell and tube heat exchangerfor clean surfaces is U0 = 400 W/m2 .K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2 .K. The overall heat transfer co￾efficient ... 1200 W/m2 .K (B) 894 W/m2 .K (C) 333 W/m2 .K (D) 287 W/m2 .K

Last Answer : (C) 333 W/m2 .K

Description : Baffles are provided in heat exchangers to increase the (A) Fouling factor (B) Heat transfer area (C) Heat transfer co-efficient (D) Heat transfer rate

Last Answer : (C) Heat transfer co-efficient

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : Which is the best tube arrangement (in a shell and tube heat exchanger) if the fluids are clean and non-fouling? (A) Square pitch (B) Triangular pitch (C) Diagonal square pitch chemical-engineering

Last Answer : (B) Triangular pitch

Description : Baffles provided on the shell side of a shell and tube heat exchanger are meant for (A) Providing support for the tubes (B) Improving heat transfer (C) Both 'a' & 'b' (D) Preventing the fouling of tubes & stagnation of shell side fluid

Last Answer : C) Both 'a' & 'b'

Description : Fouling factor' used in the design of a multipass shell and tube heat exchanger is a (A) Non-dimensional factor (B) Factor of safety

Last Answer : (B) Factor of safety

Description : Pick out the wrong statement. (A) The condensing film co-efficient is about 3 times lower for vertical condenser as compared to the equivalent horizontal condenser for identical situation ( ... in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Last Answer : (D) Overall heat transfer co-efficient in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : Log mean temperature difference (LMTD) cannot be used, if (A) Heat transfer co-efficient over the entire heat exchanger is not constant (B) There exists an unsteady state (C) The heat capacity is not constant and there is a phase change (D) None of these

Last Answer : (D) None of these

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : The advantage of using a 1 - 2 shell and tube heat exchanger over a 1 - 1 shell and tube heat exchanger is (A) Lower tube side pressure drop (B) Lower shell side pressure drop (C) Higher tube side heat transfer co-efficient (D) Higher shell side heat transfer co-efficient

Last Answer : (C) Higher tube side heat transfer co-efficient

Description : Extremely large or small volumes of fluids are generally best routed through the shell side of a shell and tube heat exchanger, because of the (A) Less corrosion problems (B) Flexibility possible in the baffle arrangement (C) Low pressure drop (D) High heat transfer co-efficient

Last Answer : (B) Flexibility possible in the baffle arrangement

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : Pick out the wrong statement. (A) 'Solvates' are chemical compounds formed by solute with their solvents. When water is the solvent, then it is called a 'hydrate' (B) In heat exchanger ... vertical evaporators, area of central downtake is about 50 to 100% of the total tube cross-sectional area

Last Answer : (C) Heat transfer co-efficient during nucleate boiling is not influenced by the agitation imparted

Description : In an extended surface heat exchanger, fluid having lower co-efficient (A) Flows through the tube (B) Flows outside the tubes (C) Can flow either inside or outside the tubes (D) Should not be used as it gives very high pressure drop

Last Answer : (B) Flows outside the tubes

Description : Which characteristic of a fluid is not important in deciding its route in a shell and tube heat exchanger? (A) Corrosiveness (B) Fouling characteristic (C) Viscosity (D) None of these

Last Answer : (D) None of these

Description : Which of the following parameters of the fluid is not very important, while deciding its route in a shell and tube heat exchanger? (A) Corrosiveness & fouling characteristics (B) Pressure (C) Viscosity (D) Density

Last Answer : (D) Density

Description : Heat transfer co-efficient (h) for a fluid flowing inside a clean pipe is given by h = 0.023 (K/D) (DVρ/µ) 0.8 (CP .µ/k) 0.4 . This is valid for the value of NRe equal to (A) < 2100 (B) 2100-4000 (C) > 4000 (D) > 10000

Last Answer : (D) > 10000

Description : Heat transfer efficiency leading of energy conservation in a heat exchanger can be achieved by (A) Keeping the heat transfer surface clean (B) Enhancing the fluid pumping rate (C) Increasing the tube length (D) None of these

Last Answer : (A) Keeping the heat transfer surface clean

Description : Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2 .°C. Condensation of vapor is carried out inside the tube in a shell and tube heat ... drop through the exchanger is desired (D) Temperature of the incoming vapor is very high

Last Answer : (B) Supersaturated

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1

Description : Heat exchangers operating, when the asymptotic range is reached, (A) Provide very large heat transfer co-efficient (B) Results in making part of the heating surface inactive (C) Results in abruptly increased velocity (D) None of these

Last Answer : (B) Results in making part of the heating surface inactive

Description : The main purpose of providing fins on heat transfer surface is to increase the (A) Temperature gradient (B) Mechanical strength of the equipment (C) Heat transfer area (D) Heat transfer co-efficient

Last Answer : (C) Heat transfer area

Description : . The inner wall of a furnace is at a temperature of 700°C. The composite wall is made of two substances, 10 and 20 cm thick with thermal conductivities of 0.05 and 0.1 W.m-1.°C-1 respectively. The ambient air is at 30°C ... from the outer surface in W.m-2 is (A) 165.4 (B) 167.5 (C) 172.5 (D) 175

Last Answer : (A) 165.4

Description : Even though heat transfer co-efficient in boiling liquids is large, use of fins is advantageous, when the entire surface is exposed to __________ boiling. (A) Film (B) Nucleate (C) Transition (D) All modes of

Last Answer : Option A

Description : Fouling factor (A) Is a dimensionless quantity (B) Does not provide a safety factor for design (C) Accounts for additional resistances to heat flow (D) None of these

Last Answer : (C) Accounts for additional resistances to heat flow

Description : Water is a better coolant than a gas (like CO2 , He, N2 etc.), because it (A) Is a better neutron moderator as well (B) Require comparatively smaller pumps and heat exchanger for a given heat transfer rate ... , and it can be pressurised to attain a high temperature (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : Mass transfer co-efficient is directly proportional to DAB 0.5 , according to __________ theory. (A) Penetration (B) Surface renewal (C) Film (D) None of these

Last Answer : (A) Penetration

Description : Mass transfer co-efficient is directly proportional to DAB according to the __________ theory. (A) Film (B) Penetration (C) Surface-renewal (D) None of these

Last Answer : (A) Film

Description : Calculation of mass transfer co-efficient is mostly/normally done using __________ theory. (A) Surface renewal (B) Film (C) Penetration (D) None of these

Last Answer : (B) Film

Description : An ideal coolant for a nuclear reactor should (A) Be a good absorber of neutrons (B) Be capable of attaining high temperature, only when it is pressurised (C) Have high density, but low heat transfer co-efficient (D) Be free from radiation damage and non-corrosive

Last Answer : (D) Be free from radiation damage and non-corrosive

Description : . A dilute aqueous solution is to be concentrated in an evaporator system. High pressure steam is available. Multiple effect evaporator system is employed, because (A) Total heat transfer area of ... in a single effect is much lower than that in any effect in a multi-effect system

Last Answer : (B) Total amount of vapor produced per Kg of feed steam in a multiple effect system is much higher than in a single effect

Description : Double pipe heat exchangers are preferably useful, when (A) High viscosity liquid is to be cooled (B) Requirement of heat transfer area is low (C) Overall heat transfer co-efficient is very high (D) A corrosive liquid is to be heated

Last Answer : (B) Requirement of heat transfer area is low

Description : Heat transfer by natural convection is enhanced in system with (A) High viscosity (B) High co-efficient of thermal expansio

Last Answer : (B) High co-efficient of thermal expansion

Description : As the difference between the wall temperature and bulk temperature increases, the boiling heat transfer co-efficient (A) Continues to increase (B) Continues to decrease (C) Goes through a minimum (D) Goes through a maximum

Last Answer : (C) Goes through a minimum

Description : The unit of heat transfer co-efficient in SI unit is (A) J/M2°K (B) W/m2°K (C) W/m°K (D) J/m°K

Last Answer : (B) W/m2°K

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Controlling heat transfer film co-efficient is the one, which offers __________ resistance to heat transfer. (A) No (B) The least (C) The largest (D) Lower

Last Answer : (C) The largest

Description : Steam side heat transfer co-efficient in an evaporator is in the range of __________ kcal/hr.m2°C. (A) 10-50 (B) 100-500 (C) 1000-1500 (D) 5000-15000

Last Answer : (D) 5000-15000

Description : Overall heat transfer co-efficient for cooling of hydrocarbons by water is about (A) 50 -100 Kcal/hr.m2 .°C (B) 50 -100 W/m2 .°K (C) 50 -100 BTU/hr. ft. 2°F (D) 1000 - 1500 BTU/hr. ft. 2°F

Last Answer : (C) 50 -100 BTU/hr. ft. 2°F

Description : In case of vertical tube evaporator, with increase in liquor level, the overall heat transfer co-efficient (A) Increases (B) Decreases (C) Is not affected (D) May increase or decrease; depends on the feed

Last Answer : (B) Decreases

Description : Heat transfer co-efficient (h1 ) for liquids increases with (A) Increasing temperature (B) Decreasing temperature (C) Decreasing Reynolds number (D) None of these

Last Answer : (A) Increasing temperature

Description : If h1 = inner film co-efficient and /h2 = outer film co-efficient, then the overall heat transfer co-efficient is (A) Always less than h1 (B) Always between h1 and h2 (C) Always higher than h2 (D) Dependent on metal resistance

Last Answer : (B) Always between h1 and h2