Which algorithm is used to solve any kind of problem?

a) Breadth-first algorithm

b) Tree algorithm

c) Bidirectional search algorithm

d) None of the mentioned

1 Answer

Answer :

b) Tree algorithm

Related questions

Description : Which of the following is/are Uninformed Search technique/techniques? a) Breadth First Search (BFS) b) Depth First Search (DFS) c) Bidirectional Search d) All of the mentioned

Last Answer : d) All of the mentioned

Description : Which search is implemented with an empty first-in-first-out queue? a) Depth-first search b) Breadth-first search c) Bidirectional search d) None of the mentioned

Last Answer : b) Breadth-first search

Description : Which algorithm are in more similar to backward chaining algorithm? a) Depth-first search algorithm b) Breadth-first search algorithm c) Hill-climbing search algorithm d) All of the mentioned

Last Answer : a) Depth-first search algorithm

Description : Which of the following algorithm is generally used CSP search algorithm? a) Breadth-first search algorithm b) Depth-first search algorithm c) Hill-climbing search algorithm d) None of the mentioned

Last Answer : b) Depth-first search algorithm

Description : Which search algorithm imposes a fixed depth limit on nodes? a) Depth-limited search b) Depth-first search c) Iterative deepening search d) Bidirectional search

Last Answer : a) Depth-limited search

Description : Which algorithm is used for solving temporal probabilistic reasoning? a) Hill-climbing search b) Hidden markov model c) Depth-first search d) Breadth-first search

Last Answer : b) Hidden markov model

Description : A* algorithm is based on ___________ a) Breadth-First-Search b) Depth-First –Search c) Best-First-Search d) Hill climbing

Last Answer : c) Best-First-Search

Description : Which algorithm will work backward from the goal to solve a problem? a) Forward chaining b) Backward chaining c) Hill-climb algorithm d) None of the mentioned

Last Answer : b) Backward chaining

Description : Which search is similar to minimax search? a) Hill-climbing search b) Depth-first search c) Breadth-first search d) All of the mentioned

Last Answer : b) Depth-first search

Description : Which search is equal to minimax search but eliminates the branches that can’t influence the final decision? a) Depth-first search b) Breadth-first search c) Alpha-beta pruning d) None of the mentioned

Last Answer : c) Alpha-beta pruning

Description : Which search implements stack operation for searching the states? a) Depth-limited search b) Depth-first search c) Breadth-first search d) None of the mentioned

Last Answer : b) Depth-first search

Description : Which search uses the problem specific knowledge beyond the definition of the problem? a) Informed search b) Depth-first search c) Breadth-first search d) Uninformed search

Last Answer : a) Informed search

Description : Which is true regarding BFS (Breadth First Search)? a) BFS will get trapped exploring a single path b) The entire tree so far been generated must be stored in BFS c) BFS is not guaranteed to find a solution if exists d) BFS is nothing but Binary First Search

Last Answer : b) The entire tree so far been generated must be stored in BFS

Description : Breadth-first search always expands the ______ node in the current fringe of the search tree. a) Shallowest b) Child node c) Deepest

Last Answer : a) Shallowest

Description : The main idea of Bidirectional search is to reduce the time complexity by searching two way simultaneously from start node and another from goal node. a) True b) False

Last Answer : a) True

Description : What is called as bidirectional search?

Last Answer : The idea behind bidirectional search is to simultaneously search both forward from the initial state & backward from the goal & stop when the two searches meet in the middle.

Description : Which is used to extract solution directly from the planning graph? a) Planning algorithm b) Graphplan c) Hill-climbing search d) All of the mentioned

Last Answer : b) Graphplan

Description : Which values are independant in minimax search algorithm? a) Pruned leaves x and y b) Every states are dependant c) Root is independant d) None of the mentioned

Last Answer : a) Pruned leaves x and y

Description : A search algorithm takes _________ as an input and returns ________ as an output. a) Input, output b) Problem, solution c) Solution, problem d) Parameters, sequence of actions

Last Answer : b) Problem, solution

Description : General algorithm applied on game tree for making decision of win/lose is ____________ a) DFS/BFS Search Algorithms b) Heuristic Search Algorithms c) Greedy Search Algorithms d) MIN/MAX Algorithms

Last Answer : d) MIN/MAX Algorithms

Description : __________ algorithm translates a planning problem in to prepositional axioms. a) GraphPlan b) SatPlan c) Greedy d) None of the mentioned

Last Answer : b) SatPlan

Description : A game can be formally defined as a kind of search problem with the following components. a) Initial State b) Successor Function c) Terminal Test d) All of the mentioned

Last Answer : d) All of the mentioned

Description : Which of the following search belongs to totally ordered plan search? a) Forward state-space search b) Hill-climbing search c) Depth-first search d) Breadth-first search

Last Answer : a) Forward state-space search

Description : Breadth-first search is not optimal when all step costs are equal, because it always expands the shallowest unexpanded node. a) True b) False

Last Answer : b) False

Description : When is breadth-first search is optimal? a) When there is less number of nodes b) When all step costs are equal c) When all step costs are unequal

Last Answer : b) When all step costs are equal

Description : Which search method takes less memory? a) Depth-First Search b) Breadth-First search c) Linear Search d) Optimal search

Last Answer : a) Depth-First Search

Description : Which search agent operates by interleaving computation and action? a) Offline search b) Online search c) Breadth-first search d) Depth-first search

Last Answer : b) Online search

Description : Which search method takes less memory? a) Depth-First Search b) Breadth-First search c) Optimal search d) Linear Search

Last Answer : a) Depth-First Search

Description : What is the main task of a problem-solving agent? a) Solve the given problem and reach to goal b) To find out which sequence of action will get it to the goal state c) All of the mentioned d) None of the mentioned

Last Answer : c) All of the mentioned

Description : A* algorithm is based on which of the following concept? A : Best-First-Search B : Breadth-First-Search C : Depth-First –Search D : Hill climbing

Last Answer : A : Best-First-Search

Description : A* algorithm is based on (A) Breadth-First-Search (B) Depth-First –Search (C) Best-First-Search (D) Hill climbing

Last Answer : (C) Best-First-Search

Description : Which algorithm takes two sentences and returns a unifier? a) Inference b) Hill-climbing search c) Depth-first search d) Unify algorithm

Last Answer : d) Unify algorithm

Description : Which is the most straightforward approach for planning algorithm? a) Best-first search b) State-space search c) Depth-first search d) Hill-climbing search

Last Answer : b) State-space search

Description : The term ___________ is used for a depth-first search that chooses values for one variable at a time and returns when a variable has no legal values left to assign. a) Forward search b) Backtrack search c) Hill algorithm d) Reverse-Down-Hill search

Last Answer : b) Backtrack search

Description : Which cannot be taken as advantage for totally ordered plan search? a) Composition b) State search c) Problem decomposition d) None of the mentioned

Last Answer : c) Problem decomposition

Description : A problem in a search space is defined by one of these state. a) Initial state b) Last state c) Intermediate state d) All of the mentioned

Last Answer : a) Initial state

Description : The BACKTRACKING-SEARCH algorithm in Figure 5.3 has a very simple policy for what to do when a branch of the search fails: back up to the preceding variable and try a different value for it. This is ... also possible to go all the way to set of variable that caused failure. a) True b) False

Last Answer : a) True

Description : A genetic algorithm (or GA) is a variant of stochastic beam search in which successor states are generated by combining two parent states, rather than by modifying a single state. a) True b) False

Last Answer : a) True

Description : __________ algorithm keeps track of k states rather than just one. a) Hill-Climbing search b) Local Beam search c) Stochastic hill-climbing search d) Random restart hill-climbing search

Last Answer : b) Local Beam search

Description : ______________ Is an algorithm, a loop that continually moves in the direction of increasing value – that is uphill. a) Up-Hill Search b) Hill-Climbing c) Hill algorithm d) Reverse-Down-Hill search

Last Answer : b) Hill-Climbing

Description : A complete, local search algorithm always finds goal if one exists, an optimal algorithm always finds a global minimum/maximum. a) True b) False

Last Answer : a) True

Description : Which search algorithm will use limited amount of memory? a) RBFS b) SMA* c) Hill-climbing search algorithm d) Both RBFS & SMA*

Last Answer : d) Both RBFS & SMA*

Description : Genetic Algorithm are a part of A . Evolutionary Computing B. inspired by Darwin's theory about evolution - "survival of the fittest" C. are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics D . All of the above

Last Answer : D . All of the above

Description : A heuristic is a way of trying ___________ a) To discover something or an idea embedded in a program b) To search and measure how far a node in a search tree seems to be from a goal c) To compare two nodes in a search tree to see if one is better than another d) All of the mentioned

Last Answer : d) All of the mentioned

Description : A heuristic is a way of trying __________ a) To discover something or an idea embedded in a program b) To search and measure how far a node in a search tree seems to be from a goal c) To compare two nodes in a search tree to see if one is better than the other is d) All of the mentioned

Last Answer : d) All of the mentioned

Description : A bidirectional feedback loop links computer modelling with: a. artificial science b. heuristic processing c. human intelligence d. cognitive science

Last Answer : d. cognitive science

Description : Which suggests the existence of an efficient recursive algorithm for online smoothing? a) Matrix b) Constant space c) Constant time d) None of the mentioned

Last Answer : b) Constant space

Description : Which data structure is used to give better heuristic estimates? a) Forwards state-space b) Backward state-space c) Planning graph algorithm d) None of the mentioned

Last Answer : c) Planning graph algorithm

Description : What will backward chaining algorithm will return? a) Additional statements b) Substitutes matching the query c) Logical statement d) All of the mentioned

Last Answer : b) Substitutes matching the query

Description : Which are needed to compute the logical inference algorithm? a) Logical equivalence b) Validity c) Satisfiability d) All of the mentioned

Last Answer : d) All of the mentioned