______________ Is an algorithm, a loop that continually moves in the direction of increasing value –

that is uphill.

a) Up-Hill Search

b) Hill-Climbing

c) Hill algorithm

d) Reverse-Down-Hill search

1 Answer

Answer :

b) Hill-Climbing

Related questions

Description : What is the name of algorithm in which a loop that continually moves in the direction of increasing value – that is uphill A : Up-Hill Search B : Hill-Climbing C : Hill algorithm D : Platue climbing valley

Last Answer : B : Hill-Climbing

Description : What is the name of algorithm in which a loop that continually moves in the direction of increasing value – that is uphill A : Up-Hill Search B : Hill-Climbing C : Hill algorithm D : Platue climbing valley

Last Answer : B : Hill-Climbing

Description : What is the name of algorithm in which a loop that continually moves in the direction of increasing value – that is uphill A : Up-Hill Search B : Hill-Climbing C : Hill algorithm D : Platue climbing valley

Last Answer : B : Hill-Climbing

Description : What is the name of algorithm in which a loop that continually moves in the direction of increasing value – that is uphill A : Up-Hill Search B : Hill-Climbing C : Hill algorithm D : Platue climbing valley

Last Answer : B : Hill-Climbing

Description : Stochastic hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphil1 move. a) True b) False

Last Answer : a) True

Description : The term ___________ is used for a depth-first search that chooses values for one variable at a time and returns when a variable has no legal values left to assign. a) Forward search b) Backtrack search c) Hill algorithm d) Reverse-Down-Hill search

Last Answer : b) Backtrack search

Description : Which algorithm is used for solving temporal probabilistic reasoning? a) Hill-climbing search b) Hidden markov model c) Depth-first search d) Breadth-first search

Last Answer : b) Hidden markov model

Description : Which is used to extract solution directly from the planning graph? a) Planning algorithm b) Graphplan c) Hill-climbing search d) All of the mentioned

Last Answer : b) Graphplan

Description : Which algorithm takes two sentences and returns a unifier? a) Inference b) Hill-climbing search c) Depth-first search d) Unify algorithm

Last Answer : d) Unify algorithm

Description : Which algorithm are in more similar to backward chaining algorithm? a) Depth-first search algorithm b) Breadth-first search algorithm c) Hill-climbing search algorithm d) All of the mentioned

Last Answer : a) Depth-first search algorithm

Description : Which is the most straightforward approach for planning algorithm? a) Best-first search b) State-space search c) Depth-first search d) Hill-climbing search

Last Answer : b) State-space search

Description : Which of the following algorithm is generally used CSP search algorithm? a) Breadth-first search algorithm b) Depth-first search algorithm c) Hill-climbing search algorithm d) None of the mentioned

Last Answer : b) Depth-first search algorithm

Description : __________ algorithm keeps track of k states rather than just one. a) Hill-Climbing search b) Local Beam search c) Stochastic hill-climbing search d) Random restart hill-climbing search

Last Answer : b) Local Beam search

Description : A* algorithm is based on ___________ a) Breadth-First-Search b) Depth-First –Search c) Best-First-Search d) Hill climbing

Last Answer : c) Best-First-Search

Description : Which search algorithm will use limited amount of memory? a) RBFS b) SMA* c) Hill-climbing search algorithm d) Both RBFS & SMA*

Last Answer : d) Both RBFS & SMA*

Description : When will Hill-Climbing algorithm terminate? a) Stopping criterion met b) Global Min/Max is achieved c) No neighbor has higher value d) All of the mentioned

Last Answer : c) No neighbor has higher value

Description : Which of the following search belongs to totally ordered plan search? a) Forward state-space search b) Hill-climbing search c) Depth-first search d) Breadth-first search

Last Answer : a) Forward state-space search

Description : Which search is similar to minimax search? a) Hill-climbing search b) Depth-first search c) Breadth-first search d) All of the mentioned

Last Answer : b) Depth-first search

Description : Hill climbing sometimes called ____________ because it grabs a good neighbor state without thinking ahead about where to go next. a) Needy local search b) Heuristic local search c) Greedy local search d) Optimal local search

Last Answer : c) Greedy local search

Description : What are the main cons of hill-climbing search? a) Terminates at local optimum & Does not find optimum solution b) Terminates at global optimum & Does not find optimum solution c) Does not find optimum solution & Fail to find a solution

Last Answer : a) Terminates at local optimum & Does not find optimum solution

Description : Define Hill Climbing search.

Last Answer : It is a loop that continually moves in a increasing value direction (i.e.) up hill and terminates when it reaches a “peak” where no neighbor has a higher value. 

Description : A* algorithm is based on which of the following concept? A : Best-First-Search B : Breadth-First-Search C : Depth-First –Search D : Hill climbing

Last Answer : A : Best-First-Search

Description : A* algorithm is based on (A) Breadth-First-Search (B) Depth-First –Search (C) Best-First-Search (D) Hill climbing

Last Answer : (C) Best-First-Search

Description : When will Hill-Climbing algorithm terminate? A : Stopping criterion met B : Global Min/Max is achieved C : No neighbour has higher value D : no criteria to terminate

Last Answer : C : No neighbour has higher value

Description : What are the variants of hill climbing?

Last Answer : i. Stochastic hill climbing  ii. First choice hill climbing  iii. Simulated annealing search  iv. Local beam search  v. Stochastic beam search

Description : List some drawbacks of hill climbing process. 

Last Answer : Local maxima: A local maxima as opposed to a goal maximum is a peak that is lower that the highest peak in the state space. Once a local maxima is reached the algorithm will halt even though ... of the state space where the evaluation fn is essentially flat. The search will conduct a random walk.

Description : A perceptron is a ______________ a) Feed-forward neural network b) Backpropagation algorithm c) Backtracking algorithm d) Feed Forward-backward algorithm

Last Answer : a) Feed-forward neural network

Description : The BACKTRACKING-SEARCH algorithm in Figure 5.3 has a very simple policy for what to do when a branch of the search fails: back up to the preceding variable and try a different value for it. This is ... also possible to go all the way to set of variable that caused failure. a) True b) False

Last Answer : a) True

Description : Which algorithm will work backward from the goal to solve a problem? a) Forward chaining b) Backward chaining c) Hill-climb algorithm d) None of the mentioned

Last Answer : b) Backward chaining

Description : An algorithm is complete if ____________ a) It terminates with a solution when one exists b) It starts with a solution c) It does not terminate with a solution d) It has a loop

Last Answer : a) It terminates with a solution when one exists

Description : Which values are independant in minimax search algorithm? a) Pruned leaves x and y b) Every states are dependant c) Root is independant d) None of the mentioned

Last Answer : a) Pruned leaves x and y

Description : General algorithm applied on game tree for making decision of win/lose is ____________ a) DFS/BFS Search Algorithms b) Heuristic Search Algorithms c) Greedy Search Algorithms d) MIN/MAX Algorithms

Last Answer : d) MIN/MAX Algorithms

Description : A genetic algorithm (or GA) is a variant of stochastic beam search in which successor states are generated by combining two parent states, rather than by modifying a single state. a) True b) False

Last Answer : a) True

Description : A complete, local search algorithm always finds goal if one exists, an optimal algorithm always finds a global minimum/maximum. a) True b) False

Last Answer : a) True

Description : Which search algorithm imposes a fixed depth limit on nodes? a) Depth-limited search b) Depth-first search c) Iterative deepening search d) Bidirectional search

Last Answer : a) Depth-limited search

Description : Which algorithm is used to solve any kind of problem? a) Breadth-first algorithm b) Tree algorithm c) Bidirectional search algorithm d) None of the mentioned

Last Answer : b) Tree algorithm

Description : A search algorithm takes _________ as an input and returns ________ as an output. a) Input, output b) Problem, solution c) Solution, problem d) Parameters, sequence of actions

Last Answer : b) Problem, solution

Description : Genetic Algorithm are a part of A . Evolutionary Computing B. inspired by Darwin's theory about evolution - "survival of the fittest" C. are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics D . All of the above

Last Answer : D . All of the above

Description :  The initial state and the legal moves for each side define the __________ for the game. a) Search Tree b) Game Tree c) State Space Search d) Forest

Last Answer : b) Game Tree

Description : What are the main cons of hill-climbing search? A : Terminates at local optimum & Does not find optimum solution B : Terminates at global optimum & Does not find optimum solution C : Does not find optimum solution & Fail to find a solution D : Fail to find a solution

Last Answer : A : Terminates at local optimum & Does not find optimum solution

Description : What are the main cons of hill-climbing search? A : Terminates at local optimum & Does not find optimum solution B : Terminates at global optimum & Does not find optimum solution C : Does not find optimum solution & Fail to find a solution D : Fail to find a solution

Last Answer : A : Terminates at local optimum & Does not find optimum solution

Description : What are the main cons of hill-climbing search? A : Terminates at local optimum & Does not find optimum solution B : Terminates at global optimum & Does not find optimum solution C : Does not find optimum solution & Fail to find a solution D : Fail to find a solution

Last Answer : A : Terminates at local optimum & Does not find optimum solution

Description : Which one of the following is not an informed search technique? (A) Hill climbing search (B) Best first search (C) A* search (D) Depth first search

Last Answer : (D) Depth first search

Description : Two travellers spend from 12 o'clock to 6 o'clock walking along a level road, up a hill and back again. Their pace is 4 mph on the level, 3 mph uphill, and 6 mph downhill.How far do they walk and at what time do they reach the top of the hill? -Riddles

Last Answer : 24 miles half past three.

Description : The minimax algorithm computes the minimax decision from the current state. It uses a simple recursive computation of the minimax values of each successor state, directly implementing the defining equations. The ... are backed up through the tree as the recursion unwinds. a) True b) False

Last Answer : a) True

Description : The trace on an oscilloscope continually moves to the right of the screen when  (a) the sweep is triggered. (b) the sweep period is larger than the signal period. (c) the sweep period is smaller than the signal period. (d) there is no weep.

Last Answer : The trace on an oscilloscope continually moves to the right of the screen when the sweep period is smaller than the signal period. 

Description : The following are true about DNA synthesis: a. it requires DNA polymerase b. reverse transcriptase enzymes are involved c. moves in a 5'---> 3' direction d. the rate of error in DNA synthesis is 1 in 105 base pairs

Last Answer : it requires DNA polymerase

Description : What goes up and down a hill but never moves? -Riddles

Last Answer : A path.

Description : Neural Networks are complex ______________ with many parameters. a) Linear Functions b) Nonlinear Functions c) Discrete Functions d) Exponential Functions

Last Answer : a) Linear Functions

Description : ______________ is/are the way/s to represent uncertainty. a) Fuzzy Logic b) Probability c) Entropy d) All of the mentioned

Last Answer : d) All of the mentioned