In the given truss bridge parallelogram ABCD and PQRS are congruent if AB 24 feet what is PQ?

1 Answer

Answer :

In the given truss bridge parallelogram ABCD and PQRS are congruent if AB 24 feet what is PQ?

Related questions

Description : In the given truss bridge parallelogram ABCD and PQRS are congruent if AB 24 feet what is PQ?

Last Answer : In the given truss bridge parallelogram ABCD and PQRS are congruent if AB 24 feet what is PQ?

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram . -Maths 9th

Last Answer : Here, PQ = SR = 12cm Let PS = x and PS = QR ∴ x + 12 + x +12 = Perimeter 2x + 24 = 40 2x = 16 x = 8 Hence, length of each side of the parallelogram is 12cm , 8cm , 12cm and 8cm.

Description : PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram . -Maths 9th

Last Answer : Here, PQ = SR = 12cm Let PS = x and PS = QR ∴ x + 12 + x +12 = Perimeter 2x + 24 = 40 2x = 16 x = 8 Hence, length of each side of the parallelogram is 12cm , 8cm , 12cm and 8cm.

Description : In parallelogram PQRS, PQ = 10cm. The altitudes corresponding to the sides PQ and SP are respectively 6cm and 8cm. Find SP. -Maths 9th

Last Answer : Solution :-

Description : The area of parallelogram PQRS is 88 cm sq. A perpendicular from S is drawn to intersect PQ at M. If SM = 8 cm, then find the length of PQ. -Maths 9th

Last Answer : Given area of parallelogram = 88 cm² And SM = 8cm Area of a parallelogram = height × base (Height is the measurement of a perpendicular drawn from one side to other) Here, Area of PQRS = SM × PQ 88cm² = 8cm × PQ 11cm = PQ

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : If two parallelogram PQAD and PQBC arw on the opposite sides of PQ prove that ABCD is a paralellogram -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In parallelogram ABCD AC is congruent to BD. determine whether the parallelogram is a rectangle?

Last Answer : Yes, it is.

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : ABCD is a parallelogram with diagonal AC If a line XZ is drawn such that XZ ∥ AB, then BX/XC = ? (a) (AY/AC) (b) DZ/AZ (c) AZ/ZD (d) AC/AY Answer: (c) AZ/ZD 13. In the given figure, value of x (in cm) is (a) 5cm (b) 3.6 cm (c) 3.2 cm (d) 10 cm

Last Answer : (a) 5cm

Description : Find the area of the trapezium PQRS with height PQ given in the figure given below. -Maths 9th

Last Answer : The area of trapezium =

Description : Find the area of the trapezium PQRS with height PQ given in the figure given below. -Maths 9th

Last Answer : The area of trapezium =

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : In Fig. 8.40, points M and N are taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AM = CN. Show that AC and MN bisect each other. -Maths 9th

Last Answer : Solution :-

Description : ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that -Maths 9th

Last Answer : Solution :-

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : ABCD is parallelogram . AB is produced to E so that BE = AB. Provethat ED bisects BC -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : ABCD is a parallelogram AE pependicular to DC CF perpendixular to AD AB =16 m ,AE =8m ,CF =10m ,fimd AD -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : ABCD is a parallelogram. AB is produced to E such that BE = AB. Prove that ED bisects BC. -Maths 9th

Last Answer : answer:

Description : X, Y are the mid-points of opposite sides AB and DC of a parallelogram ABCD. AY and DX are joined intersecting in P. CX and BY are joined -Maths 9th

Last Answer : answer:

Description : The middle points of the parallel sides AB and CD of a parallelogram ABCD are P and Q respectively. If AQ and CP divide the diagonal BD -Maths 9th

Last Answer : answer:

Description : Let ABCD be a parallelogram. P is any point on the side AB. If DP and CP are joined in such a way that they bisect the angles -Maths 9th

Last Answer : answer:

Description : In a parallelogram ABCD, AE is perpendicular to DC and CF is perpendicular to AD. If AB = 10 cm, AE = 6 cm and CF = 8 cm, then find AD. -Maths 9th

Last Answer : Given, Parallelogram ABCD pAE = 8cm AB = 16cm CF = 10cm In a parallelogram, we know that opposite sides are equal. Therefore, CD = AB = 16cm To find the value of AD, the base is multiplied with height. Area of parallelogram = b x h 16 x 8 = AD x 10 128 = 10AD AD = 12.8cm

Description : ABCD is a regular parallelogram plot of land whose angle BAD is 60°. If the bearing of the line AB is 30°, the bearing of CD, is (A) 90° (B) 120° (C) 210° (D) 270°

Last Answer : (C) 210°

Description : PQRS is a square. A is a point on PS ,B is a point on PQ,C is a point on QR. ABC is a triangle inside square PQRS. Angle abc = 90° . If AP=BQ=CR then prove that angle BAC =45° -Maths 9th

Last Answer : This is the sketch of the question but its hard to answer.

Description : PQRS is a square. A is a point on PS ,B is a point on PQ,C is a point on QR. ABC is a triangle inside square PQRS. Angle abc = 90° . If AP=BQ=CR then prove that angle BAC =45° -Maths 9th

Last Answer : This is the sketch of the question but its hard to answer.