A battery of e.m.f. `10 V` is connected to resistance as shown in figure. The potential difference `V_(A) - V_(B)` between the point `A` and `B` is

1 Answer

Answer :

A battery of e.m.f. `10 V` is connected to resistance as shown in figure. The potential difference `V_(A) - V_(B) ... -2V` B. 2V C. 5V D. `(20)/(11)V`

Related questions

Description : Six resistance are connected as shown in figure. If total current flowing is `0.5A`, then the potrential difference `V_(A)-V_(B)` is

Last Answer : Six resistance are connected as shown in figure. If total current flowing is `0.5A`, then the potrential difference `V_(A) ... V B. 6 V C. 2 V D. 4 V

Description : The potential difference `(V_(A) - V_(B))` between the point `A` and `B` in the given figure is

Last Answer : The potential difference `(V_(A) - V_(B))` between the point `A` and `B` in the given figure is A. `-3 V` B. `+3 V` C. `+6 V` D. `+9 V`

Description : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the internal resistance of battery A is 1.9

Last Answer : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the ... V B. `3.8` V C. zero D. `4.8` V

Description : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and `R = 100 Omega`, the galvanometer `(G

Last Answer : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and ` ... A. 4 V B. 2 V C. 12 V D. 6 V

Description : In an L-C -R search circuit connected to an AC source `V=V_(0)sin(100pi+(pi)/(6))``V_(R)=40V, V_(L)=40 and V_(C )=10V`, resistance `R=4Omega` Choose t

Last Answer : In an L-C -R search circuit connected to an AC source `V=V_(0)sin(100pi+(pi)/(6))``V_(R)=40V, V_ ... (a) and (b) are correct D. Both a and b are wrong

Description : In an L-C -R series circuit connected to an AC source `V=V_(0)sin(100pi(t)+(pi)/(6))``V_(R)=40V, V_(L)=40 and V_(C )=10V`, resistance `R=4Omega` Choos

Last Answer : In an L-C -R series circuit connected to an AC source `V=V_(0)sin(100pi(t)+(pi)/(6))``V_(R)=40V, V_(L) ... (2) A` C. `20sqrt(2) A` D. `25sqrt(2) A`

Description : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If `0.2 mV/cm` is the potential gradient, the

Last Answer : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If ... 7.9Omega` C. `5.9Omega` D. `6.9Omega`

Description : In the circuit diagram shown in figure, potential difference across `3Omega` resistance is 20 V. Then, match the following two columns.

Last Answer : In the circuit diagram shown in figure, potential difference across `3Omega` resistance is 20 V. Then, match the following two columns.

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : A current of `2 A` flows in a system of conductor as shown. The potential difference `(V_(A) - V_(B))`

Last Answer : A current of `2 A` flows in a system of conductor as shown. The potential difference `(V_(A) - V_(B))` A. `-1V` B. `+1V` C. `-2V` D. `+2V`

Description : A current of `2 A` flows in a system of conductor as shown. The potential difference `(V_(A) - V_(B))`

Last Answer : A current of `2 A` flows in a system of conductor as shown. The potential difference `(V_(A) - V_(B))` A. `+1V` B. `-1V` C. `+2V` D. `-2V`

Description : As shown in the figure, 1 ohm resistance is connected across a source that has a load line v + i = 100. The current through the resistance is A) 25 A B) 50 A C) 100 A D) 200A

Last Answer : As shown in the figure, 1 ohm resistance is connected across a source that has a load line v + i = 100. The current through the resistance is 50 A

Description : In the part of circuit shown in figure, match the following two columns for `V_(AB)`

Last Answer : In the part of circuit shown in figure, match the following two columns for `V_(AB)`

Description : In the figure `V_(ab)` versus time graph along an inductor is shown. Match the following

Last Answer : In the figure `V_(ab)` versus time graph along an inductor is shown. Match the following

Description : In the circuit shown in figure q varies with time t as `q=(t^(2)=16)`. Here q is in coulomb and t in second. Find `V_(ab) "at" t=5s`

Last Answer : In the circuit shown in figure q varies with time t as `q=(t^(2)=16)`. Here q is in coulomb and t in second. ... 50 V B. 35.5 V C. 46.5 V D. 40.2 V

Description : In the circuit shown in figure q varies with time t as `q=(t^(2)=16)`. Here q is in coulomb and t in second. Find `V_(ab)=(V_(a)-V_(b)) at t=3s`

Last Answer : In the circuit shown in figure q varies with time t as `q=(t^(2)=16)`. Here q is in coulomb and t in second. ... `18.5 V` C. `-25.5 V` D. `22.5 V`

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : A charge q is moving with a velocity `v_(1)=1hati` m/s at a point in a magentic field and experiences a force `F=q[-hatj+1hatk]` N. If the charge is m

Last Answer : A charge q is moving with a velocity `v_(1)=1hati` m/s at a point in a magentic field and experiences a force `F ... `(hat(i)+hat(j)-hat(k))Wb//m^(2)`

Description : An adsorption isotherm equation proposed by Langmuir is of the form `V = (V_(0)bPO)/((1 + bP))` where V is the volume of gas adsorbed at pressure P. F

Last Answer : An adsorption isotherm equation proposed by Langmuir is of the form `V = (V_(0)bPO)/((1 + bP))` where V is ... of V on P can be depicted as B. C. D.

Description : A thick wire of radius `r=5 mm` carries a steady current `I=10 A`. An electron leaves its surface perpendicularly with velocity `v_(0)=10^(6) m//s`. F

Last Answer : A thick wire of radius `r=5 mm` carries a steady current `I=10 A`. An electron leaves its ... from the surface of the wire before it turns back.

Description : Assertion : Current versus potential difference (i-V) graph for a conductor at two different temperatures `T_(1)` and `T_(2)` is shown in figure. Henc

Last Answer : Assertion : Current versus potential difference (i-V) graph for a conductor at two different ... If Assertion is false but Reason is true.

Description : A 2 V battery, a `990Omega` resistor and a potentiometer of 2 m length, all are connected in series of the resistance of potentiometer wire is `10Omeg

Last Answer : A 2 V battery, a `990Omega` resistor and a potentiometer of 2 m length, all are connected in series of the resistance ... 0.01Vm^(-1)` D. `0.1Vm^(-1)`

Description : The potential difference in volt across the resistance `R_(3)` in the circuit shown in figure, is `(R_(1)=15Omega,R_(2)=15Omega, R_(3)=30Omega, R_(4)=

Last Answer : The potential difference in volt across the resistance `R_(3)` in the circuit shown in figure, is `(R_(1)=15Omega,R_(2 ... 5 B. `7.5` C. 15 D. `12.5`

Description : In the circuit shown in figure switch S is closed at time t=0 Potential difference across `3Omega` resistance at time t is given by

Last Answer : In the circuit shown in figure switch S is closed at time t=0 Potential difference across `3Omega` resistance at time t ... 2t)` D. `18(1-e^(-t//9))`

Description : Identical dielectric slabs are inserted into two identical capacitors `A` and `B`. These capacitors and a battery are connected as shown in figure. No

Last Answer : Identical dielectric slabs are inserted into two identical capacitors `A` and `B`. These capacitors ... , which fully appears as heat in the circuit

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : Find the potential difference between points A and B `(V_(B)-V_(A))` in the network

Last Answer : Find the potential difference between points A and B `(V_(B)-V_(A))` in the network

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2)` and `R_(3)` are the net resista

Last Answer : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2) ... 1:2:3` C. `5:4:3` D. `4:3:2`

Description : Assertion : In the circuit shown in figure, battery is ideal. If a resistance `R_(0)` is cannected in parallel with R, then power across R will increa

Last Answer : Assertion : In the circuit shown in figure, battery is ideal. If a resistance `R_(0)` is cannected ... . D. If Assertion is false but Reason is true.

Description : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential drop across B and C measured by vol

Last Answer : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential ... 29 B. 27 V C. 31 V D. 30 V

Description : A voltmeter arranged across the power supply measures A. potential difference B. e.m.f C. current D. resistance

Last Answer : e.m.f

Description : Current in a circuit depends on A. resistance B. potential difference C. both A and B D. e.m.f

Last Answer : potential difference

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : A circular conductor of uniform resistance per unit length, is connected to a battery of 4 V. The total resistance of the conductor is `4omega`. The n

Last Answer : A circular conductor of uniform resistance per unit length, is connected to a battery of 4 V. The total resistance of ... ))/(3)` C. `2mu_(0)` D. zero

Description : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega` in series. A full scale deflection of

Last Answer : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega ... `. A. 1950 B. 7900 C. 2000 D. 7950

Description : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 Omega` in series. A full scale deflection o

Last Answer : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 ... `Omega` C. 5550 `Omega` D. 6050 `Omega`

Description : A potentiometer wire of length 10 m and resistance `10 Omega` per meter is connected in serice with a resistance box and a 2 volt battery. If a potent

Last Answer : A potentiometer wire of length 10 m and resistance `10 Omega` per meter is connected in serice with a ... Omega` C. `190 Omega` D. `90 Omega`

Description : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H` if the process is isothermal -

Last Answer : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H ... kJ B. 4.98 kJ C. 0 D. `-11.47 kJ`

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : If `10g` of `V_(2)O_(5)` is dissolved in acid and is reduced to `V^(2+)` by zinc metal, how many mole `I_(2)` could be reduced by the resulting soluti

Last Answer : If `10g` of `V_(2)O_(5)` is dissolved in acid and is reduced to `V^(2+)` by zinc metal, how many mole `I_(2 ... 127`) A. 0.11 B. 0.22 C. 0.055 D. 0.44

Description : A source of e.m.f. `E = 15V` and having negligible internal resistance is connected to a variable resistance so that the current in the circuit increa

Last Answer : A source of e.m.f. `E = 15V` and having negligible internal resistance is connected to a variable resistance so that ... 10 C B. 20 C C. 30 C D. 40 C

Description : Five cells, each with an e.m.f. of 2V and internal resistance of 0.5Ω are connected in series. The resulting battery will have

Last Answer : Five cells, each with an e.m.f. of 2V and internal resistance of 0.5Ω are connected in series. The resulting battery will have An e.m.f. of 10V and an internal resistance of 2.5 Ω

Description : In the adjoining circuit, the battery `E_(1)` has an e.m.f me of 12 volt and zero internal resistance while the battery E has an e.m.f me of 2volt . I

Last Answer : In the adjoining circuit, the battery `E_(1)` has an e.m.f me of 12 volt and zero internal resistance while the ... ohm is A. 250 B. 100 C. 50 D. 200

Description : Define the following terms as referred to battery. a) E.M.F b) Internal resistance c) Ah efficiency d) WAh efficiency

Last Answer : a) E.M.F : The electromotive force of a battery is defined as the energy spent or the work done in taking a unit positive charge around the complete circuit of the battery i.e., in ... input required to restore the initial state of charge, under specified conditions, is called Watt-hr efficiency.

Description : If `V_(A)-V_(B)=V_(0)` and the value of each resistance is R, then I. net resistance between AB is `(R)/(2)` II. Net resistance between AB is `(3R)/(5

Last Answer : If `V_(A)-V_(B)=V_(0)` and the value of each resistance is R, then I. net resistance between AB is `(R ... II B. I and III C. Only I D. All of these