I. `H_(2)S` reduces acidified `KMnO_(4)` to `MnSO_(4)` II. `H_(2)S` reduces acidified `K_(2)Cr_(2)O_(7)` to red colour `Cr_(2)(SO_(4))_(3)` III. `H_(2

1 Answer

Answer :

I. `H_(2)S` reduces acidified `KMnO_(4)` to `MnSO_(4)` II. `H_(2)S` reduces acidified `K_(2)Cr_(2) ... and III C. only II and III D. I,II,III and IV

Related questions

Description : `SO_(2)` reduces acidified `K_(2)Cr_(2)O_(7)` to

Last Answer : `SO_(2)` reduces acidified `K_(2)Cr_(2)O_(7)` to A. `Cr_(2)(SO_(2))_(3)` B. `CrO_(3)` C. `Cr_(2)O_(3)` D. chromium

Description : When `H_(2)O_(2)` is reacted with `K_(2)Cr_(2)O_(7)" in dilute "H_(2)SO_(4)` and then ether is added. The ether layer gets -colour

Last Answer : When `H_(2)O_(2)` is reacted with `K_(2)Cr_(2)O_(7)" in dilute "H_(2)SO_(4)` and then ether ... layer gets -colour A. Red B. Yellow C. Blue D. Green

Description : A compound 'X' of the formula `C_(3)H_(8)O` gives iodoform test. On oxidation with acidified `K_(2)Cr_(2)O_(7)X` gave Y. Y also gives iodogorm test. T

Last Answer : A compound 'X' of the formula `C_(3)H_(8)O` gives iodoform test. On oxidation with acidified `K_(2)Cr_(2) ... ` D. `CH_(3)COCH_(3), CH_(3)CHOHCH_(3)`

Description : When a mixture of solid NaCl, solid `K_(2)Cr_(2)O_(7)` is heated with conc. `H_(2)SO_(4)` orange red vapours are obtained. These are of the compound

Last Answer : When a mixture of solid NaCl, solid `K_(2)Cr_(2)O_(7)` is heated with conc. `H_(2 ... B. chromyl chloride C. chromic chloride D. chromic sulphate

Description : The oxidation state of sulhur in `H_(2)SO_(5)` and chromium in `K_(2)Cr_(2)O_(7)` respectively is :-

Last Answer : The oxidation state of sulhur in `H_(2)SO_(5)` and chromium in `K_(2)Cr_(2)O_(7)` respectively is :- A. 8, 6 B. 4, 6 C. 8, 8 D. 6, 6

Description : `[X]+H_(2)SO_(4) rarr [Y]` a colourless gas with irritating smell `[Y] + K_(2)Cr_(2)O_(7) + H_(2)SO_(4) rarr` green solution `[X]` and `[Y]` are

Last Answer : `[X]+H_(2)SO_(4) rarr [Y]` a colourless gas with irritating smell `[Y] + K_(2)Cr_(2)O_(7) + H_(2)SO_(4) rarr ... 2-), H_(2)S` D. `CO_(3)^(2-), CO_(2)`

Description : One mole of acidified `K_(2)Cr_(2)O_(7)` on reaction with excess of KCl will liberate….., moles of `I_(2)`.

Last Answer : One mole of acidified `K_(2)Cr_(2)O_(7)` on reaction with excess of KCl will liberate….., moles of `I_(2)`. A. 6 B. 1 C. 7 D. 3

Description : A gas turns lime water milky and acidified `K_(2)Cr_(2)O_(7)` solution green then gas is :

Last Answer : A gas turns lime water milky and acidified `K_(2)Cr_(2)O_(7)` solution green then gas is : A. `HCl` B. `H_(2)S` C. `SO_(2)` D. `CO_(2)`

Description : Three different solutions of oxidising agents `KMnO_(4),K_(2)Cr_(2)O_(7) " and "I_(2)` is titrated separately with 0.158 gm of `Na_(2)S_(2)O_(3)`. If

Last Answer : Three different solutions of oxidising agents `KMnO_(4),K_(2)Cr_(2)O_(7) " and "I_(2)` is ... D. all three oxidising agent can act as self indicator.

Description : If equal volumes of `0.1 M KMnO_(4)` and `0.1 M K_(2)Cr_(2)O_(7)` solutions are allowed to oxidise `Fe^(2+)` to `Fe^(3+)` in acidic medium, then `Fe^(

Last Answer : If equal volumes of `0.1 M KMnO_(4)` and `0.1 M K_(2)Cr_(2)O_(7)` solutions are allowed to ... O_(7)` C. equal in both cases D. cannot be determined.

Description : An aqueous solution of a gas (X) gives the following reactions : (i) It decolourizes an acified `K_(2)Cr_(2)O_(7)`. (ii) On boiling with `H_(2)O_(2)`,

Last Answer : An aqueous solution of a gas (X) gives the following reactions : (i) It decolourizes an acified `K_(2)Cr_(2)O_(7)` ... B. `SO_(3)` C. `CO_(2)` D. `CO`

Description : Which of the following is not formed when `H_(2)S` reacts acidic `K_(2)Cr_(2)O_(7)` solution ?

Last Answer : Which of the following is not formed when `H_(2)S` reacts acidic `K_(2)Cr_(2)O_(7)` solution ? A. `CrSO_(4)` B. ... (4))_(3)` C. `K_(2)SO_(4)` D. `S`

Description : Which of the following is not formed when `H_(2)S` reacts acidic `K_(2)Cr_(2)O_(7)` solution ?

Last Answer : Which of the following is not formed when `H_(2)S` reacts acidic `K_(2)Cr_(2)O_(7)` solution ? A. `CrSO_(4)` B. ... (4))_(3)` C. `K_(2)SO_(4)` D. `S`

Description : Hydrogen peroxide solution `(20 mL)` reacts quantitatively with a solution of `KMnO_(4) (20 mL)` acidified with dilute of `H_(2)SO_(4)`. The same volu

Last Answer : Hydrogen peroxide solution `(20 mL)` reacts quantitatively with a solution of `KMnO_(4) (20 mL)` ... calculate the molarity of `H_(2)O_(2)`.

Description : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii),"conc." H_(2)SO_(4) + KCl rarr),((iii),"conc." H_

Last Answer : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii)," ... ,((ix),"conc." H_(2)SO_(4) + Cu rarr,,):}`

Description : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii),"conc." H_(2)SO_(4) + KCl rarr),((iii),"conc." H_

Last Answer : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii)," ... ,((ix),"conc." H_(2)SO_(4) + Cu rarr,,):}`

Description : How many compound(s) or iron (s) can be oxidised by `H_(2)O_(2)` among the following (i) `AsO_(3)^(2)` (ii) `SO_(4)^(2-)` (iii) `Fe_(2) (SO_(4))_(3)`

Last Answer : How many compound(s) or iron (s) can be oxidised by `H_(2)O_(2)` among the following (i) `AsO_(3)^(2)` (ii) ... ` (v) `H_(2)S` (vi) PbS (vii) `O_(3)`

Description : How many compound(s) or iron (s) can be oxidised by `H_(2)O_(2)` among the following (i) `AsO_(3)^(2)` (ii) `SO_(4)^(2-)` (iii) `Fe_(2) (SO_(4))_(3)`

Last Answer : How many compound(s) or iron (s) can be oxidised by `H_(2)O_(2)` among the following (i) `AsO_(3)^(2)` (ii) ... ` (v) `H_(2)S` (vi) PbS (vii) `O_(3)`

Description : Ethyl alcohol on oxidation with acidified `K_(2)Ce_(2)O_(7)` gives

Last Answer : Ethyl alcohol on oxidation with acidified `K_(2)Ce_(2)O_(7)` gives A. `CH_(3)COCH_(3)` B. `HCOOH` C. `CH_(3)COOH` D. `HCHO

Description : Assertion :- In acidic medium, equivalent weight of `K_(2)Cr_(2)O_(7)` is equal to `294//6`. Reason :- In acidic medium, `Cr_(2)O_(7)^(-2)` is reduced

Last Answer : Assertion :- In acidic medium, equivalent weight of `K_(2)Cr_(2)O_(7)` is equal to `294//6`. ... is False. D. If both Assertion & Reason are False.

Description : `K_(2)Cr_(2)O_(7)` react with hydrazins to form product. The oxidation state of Cr in the product will be :-

Last Answer : `K_(2)Cr_(2)O_(7)` react with hydrazins to form product. The oxidation state of Cr in the product will be :- A. `+4` B. `+3` C. `+5` D. `+2`

Description : In the titration of `K_(2)Cr_(2)O_(7)` and ferrous sulphate, following data is obtained: `V_(1)` mL of `K_(2)Cr_(2)O_(7)` solution of molarity `M_(1)`

Last Answer : In the titration of `K_(2)Cr_(2)O_(7)` and ferrous sulphate, following data is obtained: `V_(1)` mL of `K_(2)Cr_ ... V_(2)` D. `M_(1)V_(1)=M_(2)V_(2)`

Description : A 100 mL sample of water was treated to convert any iron present to `Fe^(2+)`. Addition of 25 mL of 0.002 M `K_(2)Cr_(2)O_(7)` resulted in the reactio

Last Answer : A 100 mL sample of water was treated to convert any iron present to `Fe^(2+)`. Addition of 25 ... parts per million (ppm) of iron in the water sample.

Description : How many mL of 0.3M `K_(2)Cr_(2)O_(7)` (acidic) is required for complete oxidation of 5 mL of 0.2 M `SnC_(2)O_(4)` solution.

Last Answer : How many mL of 0.3M `K_(2)Cr_(2)O_(7)` (acidic) is required for complete oxidation of 5 mL of 0.2 M `SnC_(2)O_(4)` solution.

Description : 25 mL of a solution of `Fe^(2+)` ions was titrated with a solution of the oxidizing agent `Cr_(2)O_(7)^(2-)` . 50 mL of 0.01 M `K_(2)Cr_(2)O_(7)` solu

Last Answer : 25 mL of a solution of `Fe^(2+)` ions was titrated with a solution of the oxidizing agent `Cr_(2)O_ ... is the molarity of the `Fe^(2+)` solution ?

Description : Oxidation number of P in `PO_(4)^(3-)`, of S in `SO_(4)^(2-)` and that of `Cr_(2)O_(7)^(2-)` are respectively

Last Answer : Oxidation number of P in `PO_(4)^(3-)`, of S in `SO_(4)^(2-)` and that of `Cr_(2)O_(7)^(2-)` are ... . `+3, +6 and +5` D. `+5, +3, and +6`

Description : Which of the following compounds can be used for drying of `H_(2)S` gas? I. Conc `H_(2)SO_(4)` II. `P_(4)O_(10)` III. Anhydrous `CaC1_(2)` IV. Anhydro

Last Answer : Which of the following compounds can be used for drying of `H_(2)S` gas? I. Conc `H_(2)SO_(4)` II. ` ... IV B. only I C. only II and III D. only III

Description : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2)(O_(2))(NH_(3))]` respectively are :

Last Answer : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2 ... and +4` C. `+3,+4 and +6` D. `+3,+2 and +4`

Description : When `SO_(2)` is passed through acidified solution of `H_(2)S`

Last Answer : When `SO_(2)` is passed through acidified solution of `H_(2)S` A. `H_(2)SO_(3)` is formed B. ... . Sulphur is precipitated D. `H_(2)SO_(5)` is formed

Description : x mmol of `KMnO_(4)` react completely with y mmol of `MnSO_(4)` in presence of fluoride ions to give `MnF_(4)` quantitatively. Then :

Last Answer : x mmol of `KMnO_(4)` react completely with y mmol of `MnSO_(4)` in presence of fluoride ions to give `MnF_(4)` ... =y B. 4x=y C. `xgty` D. `x lt y`

Description : Cold dil. `H_(2)SO_(4)` will completely dissolve : (i) Pb (ii) `Fe_(3)O_(4)` (iii) Fe (iv) Cu (v) Mg (vi) MgO (vii) `CoCO_(3)` (viii) `CuCO_(2)` (ix)

Last Answer : Cold dil. `H_(2)SO_(4)` will completely dissolve : (i) Pb (ii) `Fe_(3)O_(4)` (iii) Fe (iv) Cu (v) ... ) `CoCO_(3)` (viii) `CuCO_(2)` (ix) `SrCO_(3)`

Description : Cold dil. `H_(2)SO_(4)` will completely dissolve : (i) Pb (ii) `Fe_(3)O_(4)` (iii) Fe (iv) Cu (v) Mg (vi) MgO (vii) `CoCO_(3)` (viii) `CuCO_(2)` (ix)

Last Answer : Cold dil. `H_(2)SO_(4)` will completely dissolve : (i) Pb (ii) `Fe_(3)O_(4)` (iii) Fe (iv) Cu (v) ... ) `CoCO_(3)` (viii) `CuCO_(2)` (ix) `SrCO_(3)`

Description : Find the valence factor for following salts : (i) `K_(2)SO_(4).Al_(2)(SO_(4))_(3).24H_(2)O " " (ii) CaCO_(3)`

Last Answer : Find the valence factor for following salts : (i) `K_(2)SO_(4).Al_(2)(SO_(4))_(3).24H_(2)O " " (ii) CaCO_(3)`

Description : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3), HNO_(3), H_(3)PO_(3)`. (a) Among the above compounds, co

Last Answer : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3 ... `d pi - p pi` bond are y. Given the answer as `x + y`

Description : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3), HNO_(3), H_(3)PO_(3)`. (a) Among the above compounds, co

Last Answer : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3 ... `d pi - p pi` bond are y. Given the answer as `x + y`

Description : `(NH_(4))_(2)Cr_(2)O_(7)` on heating gives a gas which is also given by :

Last Answer : `(NH_(4))_(2)Cr_(2)O_(7)` on heating gives a gas which is also given by : A. heating `NH_(4)NO_(2) ... 2)O` D. teating Na (compound) with `H_(2)O_(2)`

Description : In how many of the following reactions `N_(2)` gas may be released `{:((a) NH_(4)NO_(2) overset(Delta)rarr,(b) (NH_(4))_(2) Cr_(2)O_(7) overset(Delta)

Last Answer : In how many of the following reactions `N_(2)` gas may be released `{:((a) NH_(4)NO_(2) overset(Delta) ... i) Ba(N_(3))_(2) overset(Delta) rarr):}`

Description : `(NH_(4))_(2)Cr_(2)O_(7)` on heating gives a gas which is also given by :

Last Answer : `(NH_(4))_(2)Cr_(2)O_(7)` on heating gives a gas which is also given by : A. heating `NH_(4)NO_(2) ... 2)O` D. teating Na (compound) with `H_(2)O_(2)`

Description : In how many of the following reactions `N_(2)` gas may be released `{:((a) NH_(4)NO_(2) overset(Delta)rarr,(b) (NH_(4))_(2) Cr_(2)O_(7) overset(Delta)

Last Answer : In how many of the following reactions `N_(2)` gas may be released `{:((a) NH_(4)NO_(2) overset(Delta) ... i) Ba(N_(3))_(2) overset(Delta) rarr):}`

Description : Amount of oxalic acid present in a solution can be determined by its titration with `KMnO_(4)` solution in the presence of `H_(2)SO_(4)`. The titratio

Last Answer : Amount of oxalic acid present in a solution can be determined by its titration with `KMnO_(4)` ... . D. gets oxidised by oxalic acid to chlorine.

Description : `C_(2)H_(5)OH overset(KMnO_(4)//H^(oplus))rarrX underset(H_(2)SO_(4))overset(Y)rarr CH_(3)COOC_(2)H_(5)`, X and Y respectively are

Last Answer : `C_(2)H_(5)OH overset(KMnO_(4)//H^(oplus))rarrX underset(H_(2)SO_(4))overset(Y)rarr CH_(3)COOC_(2)H_(5)` ... CH_(3)COOH` D. `CH_(3)COOH, C_(2)H_(5)OH`

Description : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated required 200 mL of 0.1 N `Na_(2)S_(2)O_(3)

Last Answer : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated ... 56 mL B. 112 mL C. 168 mL D. 224 mL

Description : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated required 200 mL of 0.1 N `Na_(2)S_(2)O_(3)

Last Answer : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated required ... . 0.8 g C. 4.2 g D. 0.98 g

Description : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated required 200 mL of 0.1 N `Na_(2)S_(2)O_(3)

Last Answer : Some amount of "20V" `H_(2)O_(2)` is mixed with excess of acidified solution of Kl. The iodine so liberated required ... 37.2 mL C. 5.6 mL D. 22.4 mL

Description : To a 25 mL `H_(2)O_(2)` solution excess acidified solution of Kl was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use thes

Last Answer : To a 25 mL `H_(2)O_(2)` solution excess acidified solution of Kl was added. The iodine liberated 20 ml of ... strength of `H_(2)O_(2)` is 1.344 L

Description : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

Last Answer : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Description : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_(2)O_(4)` solution react with o.1 mL of previous `K

Last Answer : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_( ... 15/6 mL B. 13/16 C. `11/14` D. None of these

Description : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)`

Last Answer : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)` A. A,B B. A,C C. A,D D. B,C

Description : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_(3))rarr` ……?

Last Answer : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_ ... 3)COOH` C. `HCOOH` D. `CH_(3)OH`

Description : Determine the equivalent weights of the following salts: `(a) NaCl" " (b) K_(2)SO_(4) " " Ca_(3)(PO_(4))_(2)`

Last Answer : Determine the equivalent weights of the following salts: `(a) NaCl" " (b) K_(2)SO_(4) " " Ca_(3)(PO_(4))_(2)`