In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

1 Answer

Answer :

In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Related questions

Description : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :-

Last Answer : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :- A. 2 B. 4 C. 5 D. 10

Description : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric coefficients of `Mno_(4)^(-),C_(2)O_(4)^(

Last Answer : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric ... . 16, 5, 2 C. 2, 16, 5 D. 5, 2, 16

Description : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_(2)O_(4)` solution react with o.1 mL of previous `K

Last Answer : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_( ... 15/6 mL B. 13/16 C. `11/14` D. None of these

Description : In alkaline medium , `KMnO_(4)` reacts as follows `2KMnO_(4)+2KOH rarr 2K_(2)MnO_(4)+H_(2)O+O` Therefore, the equivalent mass of `KMnO_(4)` will be

Last Answer : In alkaline medium , `KMnO_(4)` reacts as follows `2KMnO_(4)+2KOH rarr 2K_(2)MnO_(4)+H_(2)O+O` Therefore, the ... 31.6` B. `63.2` C. `126.4` D. 158

Description : When `KMnO_(4)` acts as an oxidising agnet and ultimetely from `MnO_(4)^(2-), MnO_(2), Mn_(2)O_(3)`, and `Mn^(2+)`, then the number of electrons trans

Last Answer : When `KMnO_(4)` acts as an oxidising agnet and ultimetely from `MnO_(4)^(2-), MnO_(2), Mn_(2)O_(3)`, and `Mn^(2+) ... 3, 7 C. 1, 3, 4, 5 D. 3, 5, 7, 1

Description : In the redox reaction, `2MnO_(4)^(-)+5C_(2)O_(4)^(2-)+16H^(+) to 2Mn^(2+)+10CO_(2)+8H_(2)O` 20mL of 0.1 M `KMnO_(4)` reacts quantitatively with :

Last Answer : In the redox reaction, `2MnO_(4)^(-)+5C_(2)O_(4)^(2-)+16H^(+) to 2Mn^(2+)+10CO_(2)+8H_(2)O` 20mL ... 50 mL of 0.25 M oxalate D. 50 mL of 0.1 M oxalate

Description : In the reaction `MnO_(4)^(-)+SO_(3)^(-2)+H^(+)rarrSO_(4)^(-2)+Mn^(2+)+H_(2)O`

Last Answer : In the reaction `MnO_(4)^(-)+SO_(3)^(-2)+H^(+)rarrSO_(4)^(-2)+Mn^(2+)+H_(2)O` A. `MnO_(4)^( ... `MnO_(4)^(-)` is oxidised and `SO_(3)^(2-)` is reduced

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : `S_(1): 2Se_(2)Cl_(2)rarr SeCl_(4)+3Se` `S_(2)` : Dioxides like `MnO_(2), PbO_(2)` do not form `H_(2)O_(2)` with dilute acids but they evolve oxygen w

Last Answer : `S_(1): 2Se_(2)Cl_(2)rarr SeCl_(4)+3Se` `S_(2)` : Dioxides like `MnO_(2), PbO_(2)` do not ... when boiled with water. A. FTTT B. TFTT C. FFTT D. TTTF

Description : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal The heat of formation of methane in Kcal will b

Last Answer : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal ... `-45.9` B. `-47.8` C. `-20.0` D. `-47.3`

Description : Potassium acid oxalate `K_(2)C_(2)O_(4).3H_(2)C_(2)O_(4).4H_(2)O` can be oxidized by `MnO_(4)^(-)` in acid medium. Calculate the volume of (in mL) 1 M

Last Answer : Potassium acid oxalate `K_(2)C_(2)O_(4).3H_(2)C_(2)O_(4).4H_(2)O` can be oxidized by ... reacting in acid solution with 5.08 gram of the acid oxalate.

Description : `X underset("ether")overset(Mg)rarrY underset(H^(+))overset("Dry " CO_(2))rarr X overset("hot " KMnO_(4))rarrP` The two isomeric compounds which will

Last Answer : `X underset("ether")overset(Mg)rarrY underset(H^(+))overset("Dry " CO_(2))rarr X overset("hot " KMnO_(4)) ... B. III and IV C. I and IV D. II and III

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)`

Last Answer : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)` A. A,B B. A,C C. A,D D. B,C

Description : `C_(2)H_(5)OH overset(KMnO_(4)//H^(oplus))rarrX underset(H_(2)SO_(4))overset(Y)rarr CH_(3)COOC_(2)H_(5)`, X and Y respectively are

Last Answer : `C_(2)H_(5)OH overset(KMnO_(4)//H^(oplus))rarrX underset(H_(2)SO_(4))overset(Y)rarr CH_(3)COOC_(2)H_(5)` ... CH_(3)COOH` D. `CH_(3)COOH, C_(2)H_(5)OH`

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : Cumene `underset((II)H_(2)O,H^(+))overset((i)O_(2))(rarr) (X)` and (Y) , (X) and (Y)respectively are `:`

Last Answer : Cumene `underset((II)H_(2)O,H^(+))overset((i)O_(2))(rarr) (X)` and (Y) , (X ... B. toluene, propylchloride C. phenol, acetone D. phenol, acetaldehyde

Description : If mass of `KHC_(2)O_(4)` (potassium acid oxalate) required to reduce 100 mL of 0.02 M `KMnO_(4)` in acidic medium is x g and to neutralise 100 mL of

Last Answer : If mass of `KHC_(2)O_(4)` (potassium acid oxalate) required to reduce 100 mL of 0.02 M `KMnO_(4)` in acidic ... y is 1g D. If x is 11g then y is 5.5g

Description : The reaction, `C_(6)H_(5)ONa +CO_(2)+H_(2)O rarr C_(6)H_(5)OH+NaHCO_(3)` suggests that `:`

Last Answer : The reaction, `C_(6)H_(5)ONa +CO_(2)+H_(2)O rarr C_(6)H_(5)OH+NaHCO_(3)` suggests that ... C. Water is stronger acid than phenol D. None of the above

Description : Compound (A) `C_(12)H_(20)` discharges the colour of `Br_(2)-H_(2)O` and cold `KMnO_(4)` . On reduction with `H_(2)`/Pt it gives compound (B) `C_(12)H

Last Answer : Compound (A) `C_(12)H_(20)` discharges the colour of `Br_(2)-H_(2)O` and cold `KMnO_(4)` . On ... Find structure of A : A. B. C. D. None of these

Description : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. From the above reactions find how much heat (Kca

Last Answer : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. ... g)` A. `20.6` B. `26.3` C. `44.2` D. `161.6`

Description : `MnO_(2)+4H^(+)+e^(-)rarrMn^(+3)+2H_(2)O` In the above reaction oxidation number of Mn change from :-

Last Answer : `MnO_(2)+4H^(+)+e^(-)rarrMn^(+3)+2H_(2)O` In the above reaction oxidation number of Mn change from :- A. `+2` to ... ` C. `+2` to `+3` D. `+4` to `+3`

Description : Match the following: Column I(reaction) (a) `H_(2)O_(2)+underset("2moles")(ClSO_(3)H) rarr` (b)`SO_(3)+HClrarr` c) `SO_(3)+HBr rarr` (d) `underset(("c

Last Answer : Match the following: Column I(reaction) (a) `H_(2)O_(2)+underset("2moles")(ClSO_(3) ... chloride t)Hydrogen halide is obtained as the product.

Description : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii),"conc." H_(2)SO_(4) + KCl rarr),((iii),"conc." H_

Last Answer : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii)," ... ,((ix),"conc." H_(2)SO_(4) + Cu rarr,,):}`

Description : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii),"conc." H_(2)SO_(4) + KCl rarr),((iii),"conc." H_

Last Answer : How many are redox reaction- `{:((i),K_(4)[Fe (CN)_(6)] + "conc."H_(2)SO_(4) overset(Delta)rarr,(ii)," ... ,((ix),"conc." H_(2)SO_(4) + Cu rarr,,):}`

Description : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests

Last Answer : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests A. Oxidising action of `H_(2)O_(2)` B. ... H_(2)O_(2)` D. Alkaline nature of `H_(2)O_(2)`

Description : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_(2)O+ZO_(2)` `(ii)" " H_(2)O_(2)+Ag_(2)Orarr Aa

Last Answer : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_ ... in II D. oxidising in I as well as in II

Description : Hydrogen peroxide solution `(20 mL)` reacts quantitatively with a solution of `KMnO_(4) (20 mL)` acidified with dilute of `H_(2)SO_(4)`. The same volu

Last Answer : Hydrogen peroxide solution `(20 mL)` reacts quantitatively with a solution of `KMnO_(4) (20 mL)` ... calculate the molarity of `H_(2)O_(2)`.

Description : In the balanced equation - `[Zn+H^(+)+NO_(3)^(-)rarr NH_(4)^(-) rarr NH_(4)^(+) +Zn^(+2)+H_(2)O]` coefficient of `NH_(4)^(+)` is :-

Last Answer : In the balanced equation - `[Zn+H^(+)+NO_(3)^(-)rarr NH_(4)^(-) rarr NH_(4)^(+) +Zn^(+2)+H_(2)O]` coefficient ... (4)^(+)` is :- A. 4 B. 3 C. 2 D. 1

Description : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN)rarr(B)overset(H^(+)//H_(2)O)rarr(C)` the pr

Last Answer : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN ... COOH` C. `C_(6)H_(5)OH` D. none of these

Description : In the following reaction final product is : `C_(6)H_(5)MgBr +CO_(2) overset("Ether")to overset(H^(o+))to` find product

Last Answer : In the following reaction final product is : `C_(6)H_(5)MgBr +CO_(2) overset("Ether")to ... A. Benzoic acid B. Benzaldehyde C. Benzamide D. Benzene

Description : In the following reaction final product is : `C_(6)H_(5)MgBr +CO_(2) overset("Ether")to overset(H^(o+))to` find product

Last Answer : In the following reaction final product is : `C_(6)H_(5)MgBr +CO_(2) overset("Ether")to ... A. Benzoic acid B. Benzaldehyde C. Benzamide D. Benzene

Description : For the redox reaction `Zn+NO_(3)^(-)rarr Zn^(2+)+NH_(4)^(-)` is basic medium, coefficients of `Zn, NO_(3)^(-) and OH^(-)` in the balanced equation re

Last Answer : For the redox reaction `Zn+NO_(3)^(-)rarr Zn^(2+)+NH_(4)^(-)` is basic medium, coefficients of `Zn, NO_(3)^(-) ... . 7, 4, 1 C. 4, 1, 10 D. 1, 4, 10

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is ... ` D. `Delta H` is independent of physical state of reactants

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at ... ` C. `Delta H lt Delta E` D. None of the above

Description : The value of n in : `MnO_(4)^(-)+8H^(+)+n erarr Mn^(2+)+4H_(2)O` is

Last Answer : The value of n in : `MnO_(4)^(-)+8H^(+)+n erarr Mn^(2+)+4H_(2)O` is A. 5 B. 4 C. 3 D. 2

Description : In the process of extraction of gold. Roasted gold ore `+CN^(-)+H_(2)O overset(O_(2))rarr [X]+OH^(-)` `[X]+Znrarr [Y]+Au` Identify the complexes `[X]

Last Answer : In the process of extraction of gold. Roasted gold ore `+CN^(-)+H_(2)O overset(O_(2))rarr [X]+OH^(-)` `[X]+ ... (4)]^(-),[Y] =[Zn (CN_(4))]^(-2)`

Description : `XeF_(2)+H_(2)O overset("alkali")rarr A +HF +O_(2)`, then A is

Last Answer : `XeF_(2)+H_(2)O overset("alkali")rarr A +HF +O_(2)`, then A is A. `XeO_(3)` B. `XeO_(4)` C. `XeO_(2)F_(2)` D. `Xe`

Description : `{:("List-I","List-II"),("A) O"_(3)+H_(2)O_(2)rarr,"1) Blue"),("B) O"_(3)+"starch KI"rarr,"2) Tailing"),("C) O"_(3)+"Hg"rarr,"3) HIO"_(3)),("D) O"_(3)

Last Answer : `{:("List-I","List-II"),("A) O"_(3)+H_(2)O_(2)rarr,"1) Blue"),("B) O"_(3)+"starch KI"rarr,"2) Tailing"),("C ... 4,3,2):}` D. `{:(A,B,C,D),(3,2,1,5):}`

Description : I. `H_(2)S` reduces acidified `KMnO_(4)` to `MnSO_(4)` II. `H_(2)S` reduces acidified `K_(2)Cr_(2)O_(7)` to red colour `Cr_(2)(SO_(4))_(3)` III. `H_(2

Last Answer : I. `H_(2)S` reduces acidified `KMnO_(4)` to `MnSO_(4)` II. `H_(2)S` reduces acidified `K_(2)Cr_(2) ... and III C. only II and III D. I,II,III and IV

Description : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l)Delta H` and `Delta E` both are zero. Reason :- During isothermal

Last Answer : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l) ... Reason is False. D. If both Assertion & Reason are false.

Description : To a 25 mL `H_(2)O_(2)` solution excess acidified solution of Kl was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use thes

Last Answer : To a 25 mL `H_(2)O_(2)` solution excess acidified solution of Kl was added. The iodine liberated 20 ml of ... strength of `H_(2)O_(2)` is 1.344 L

Description : Determine the equivalent weight of the following oxidising and reducing agents : (a) `KMnO_(4)` (reacting in acidic medium `MnO_(4)^(-)rarrMn^(2+)`) (

Last Answer : Determine the equivalent weight of the following oxidising and reducing agents : (a) `KMnO_(4)` (reacting in ... medium `MnO_(4)^(-)rarr MnO_(2)`)

Description : Assertion `:-` In the tissue high `P_(O_(2))`, low `P_(CO_(2))`, higher `H^(o+)` concentration conditions are favourable for dissociation of oxygen fr

Last Answer : Assertion `:-` In the tissue high `P_(O_(2))`, low `P_(CO_(2))`, higher `H^(o+)` ... Reason is False. D. If both Assertion & Reason are false.

Description : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_(3))rarr` ……?

Last Answer : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_ ... 3)COOH` C. `HCOOH` D. `CH_(3)OH`

Description : The quantity of electricity requried to reduce 0.05 mol of `MnO_(4)^(-)` to `Mn^(2+)` in acidic medium would be

Last Answer : The quantity of electricity requried to reduce 0.05 mol of `MnO_(4)^(-)` to `Mn^(2+)` in acidic medium would be A. ... F B. 0.05 F C. 0.15 F D. 0.25 F

Description : 125mL of 63% (w/v) `H_(2)C_(2)O_(4).2H_(2)O` solution is made to react with 125mL of a `40%` (w/v) `NaOH` solution. The resulting solution is : (ignor

Last Answer : 125mL of 63% (w/v) `H_(2)C_(2)O_(4).2H_(2)O` solution is made to react with 125mL of a ... ions) A. netural B. acidic C. strongly acidic D. alkaline

Description : The reaction `2K_(2)MnO_(4)+Cl_(2)rarr 2KMnO_(4)+2KCl` is an example of

Last Answer : The reaction `2K_(2)MnO_(4)+Cl_(2)rarr 2KMnO_(4)+2KCl` is an example of A. Redox B. Reduction only C. Neutralization D. Disproportionation

Description : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g),DeltaH=498kJ mol^(-1)` `OH(g) rarr H(g)+O

Last Answer : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g), ... KJ mol"^(-1)` D. `463 "KJ mol"^(-1)`