`[HXeO_(4)]^(-)+Ohrarr[X]+[Y]+O_(2)+H_(2)O` The products `[X]` and `[Y]` in unbalanced reaction are:

1 Answer

Answer :

`[HXeO_(4)]^(-)+Ohrarr[X]+[Y]+O_(2)+H_(2)O` The products `[X]` and `[Y]` in unbalanced reaction are ... -) & XeO_3` C. `XeO_3 & Xe` D. `H_2XeO_4 & Xe`

Related questions

Description : Consider the following reaction : `xMnO_(4)^(-)+yC_(2)O_(4)^(2-)+zH^(+) to xMn^(2+)+2yCO_(2)+(z)/(2)H_(2)O` The value of x, y and z in the reaction ar

Last Answer : Consider the following reaction : `xMnO_(4)^(-)+yC_(2)O_(4)^(2-)+zH^(+) to xMn^(2+)+2yCO_(2)+(z)/(2)H_(2) ... 2, 5 and 8 C. 2, 5 and 16 D. 5, 2 and 8

Description : Consider the following reaction : `xMnO_(4)^(-)+yC_(2)O_(4)^(2-)+zH^(+) to xMn^(2+)+2yCO_(2)+(z)/(2)H_(2)O` The value of x, y and z in the reaction ar

Last Answer : Consider the following reaction : `xMnO_(4)^(-)+yC_(2)O_(4)^(2-)+zH^(+) to xMn^(2+)+2yCO_(2)+(z)/(2)H_(2) ... 2, 5 and 8 C. 2, 5 and 16 D. 5, 2 and 8

Description : Cumene `underset((II)H_(2)O,H^(+))overset((i)O_(2))(rarr) (X)` and (Y) , (X) and (Y)respectively are `:`

Last Answer : Cumene `underset((II)H_(2)O,H^(+))overset((i)O_(2))(rarr) (X)` and (Y) , (X ... B. toluene, propylchloride C. phenol, acetone D. phenol, acetaldehyde

Description : A compound 'X' of the formula `C_(3)H_(8)O` gives iodoform test. On oxidation with acidified `K_(2)Cr_(2)O_(7)X` gave Y. Y also gives iodogorm test. T

Last Answer : A compound 'X' of the formula `C_(3)H_(8)O` gives iodoform test. On oxidation with acidified `K_(2)Cr_(2) ... ` D. `CH_(3)COCH_(3), CH_(3)CHOHCH_(3)`

Description : A compound X with moleuclar formula `C_(3)H_(8)O` can be oxidized to a compoud Y with the molecular formula `C_(3)H_(6)O_(2)`. X is most likely to be

Last Answer : A compound X with moleuclar formula `C_(3)H_(8)O` can be oxidized to a compoud Y with the molecular ... Aldehye B. Alcohol C. Ether D. Both 2 and 3

Description : In the process of extraction of gold. Roasted gold ore `+CN^(-)+H_(2)O overset(O_(2))rarr [X]+OH^(-)` `[X]+Znrarr [Y]+Au` Identify the complexes `[X]

Last Answer : In the process of extraction of gold. Roasted gold ore `+CN^(-)+H_(2)O overset(O_(2))rarr [X]+OH^(-)` `[X]+ ... (4)]^(-),[Y] =[Zn (CN_(4))]^(-2)`

Description : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

Last Answer : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Description : Which one is the oxidising agent in the reaction given below `2CrO_(4)^(2-)+2H^(+)rarrCr_(2)O_(7)^(-2)+H_(2)O`

Last Answer : Which one is the oxidising agent in the reaction given below `2CrO_(4)^(2-)+2H^(+)rarrCr_(2)O_(7)^(-2)+H_(2)O` ... 2)O_(7)^(-2)` C. `Cr^(++)` D. None

Description : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests

Last Answer : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests A. Oxidising action of `H_(2)O_(2)` B. ... H_(2)O_(2)` D. Alkaline nature of `H_(2)O_(2)`

Description : Reaction (A) `S^(-2)+4H_(2)O_(2)rarrSO_(4)^(2-)+4H_(2)O` (B) `Cl_(2)+H_(2)O_(2)rarr2HCl+O_(2)` The true statement regarding the above reactions is :

Last Answer : Reaction (A) `S^(-2)+4H_(2)O_(2)rarrSO_(4)^(2-)+4H_(2)O` (B) `Cl_(2)+H_(2)O_(2) ... 2)` acts as reductant in reaction (A) and oxidant in reactin (B)

Description : The eq. wt. of `Na_(2)S_(2)O_(3)` as reductant in the reaction, `Na_(2)S_(2)O_(3)+H_(2)O+Cl_(2)rarrNa_(2)SO_(4)+2HCl+S` is :

Last Answer : The eq. wt. of `Na_(2)S_(2)O_(3)` as reductant in the reaction, `Na_(2)S_(2)O_(3)+H_(2)O+Cl_(2)rarrNa_(2) ... wt.)/2 C. (Mol. wt.)/6 D. (Mol. wt.)/8

Description : What would be the equivalent weight of the reductant in the reaction : `[Fe(CN)_(6)]^(-3)+H_(2)O_(2)+2OH^(-)rarr2[Fe(CN)_(6)]^(4-)+2H_(2)O+O_(2)` [Giv

Last Answer : What would be the equivalent weight of the reductant in the reaction : `[Fe(CN)_(6)]^(-3)+H_(2)O_(2)+2OH^(-) ... O=16,H=1]` A. 17 B. 212 C. 34 D. 32

Description : The correct statement(s) about the following reaction sequence is (are) Cumene `(C_(9)H_(12))underset((ii)H_(3)O^(+))overset((i)O_(2))rarrPoverset(CHC

Last Answer : The correct statement(s) about the following reaction sequence is (are) Cumene `(C_(9)H_(12) ... violet coloration with 1% aqueous `FeCl_(3)` solution

Description : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are

Last Answer : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are A. `HCl + Na_( ... + Na_(2)SO_(3)` D. `NaHClO_(3) + H_(2)O`

Description : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are

Last Answer : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are A. `HCl + Na_( ... + Na_(2)SO_(3)` D. `NaHClO_(3) + H_(2)O`

Description : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_(2)O+ZO_(2)` `(ii)" " H_(2)O_(2)+Ag_(2)Orarr Aa

Last Answer : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_ ... in II D. oxidising in I as well as in II

Description : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)`

Last Answer : Which is a mutual reduction reaction ? A) `KMnO_(4)+O_(3)` B) `H_(2)O_(2)+O_(3)` C) `Ag_(2)O+O_(3)` D) `KI+H_(2)O+O_(3)` A. A,B B. A,C C. A,D D. B,C

Description : (i) `KI+H_(2)O+O_(3)rarrA+B+O_(2)` (A turns moist starch paper blue, B turns red litmus blue) (ii) A(dry)`+O_(3)rarrX+O_(2)` What is true about X in t

Last Answer : (i) `KI+H_(2)O+O_(3)rarrA+B+O_(2)` (A turns moist starch paper blue, B turns red litmus blue) ... )` D. Average oxidation state of iodine in X is `+5`

Description : Which of the following sequence of reagent is the good mean to furnish the conversion? `R-CH_(2)OHrarr R -CH_(2)NH_(2)`

Last Answer : Which of the following sequence of reagent is the good mean to furnish the conversion? `R-CH_(2)OHrarr R -CH_(2) ... D. `Cu,300^(@)C,NH_(2),LiAiH_(4)`

Description : `XeO_(3)` forms xenate ion in alkaline medium. `XeO_(3) +NaOH rarr Na[HXeO_(4)]` But the xenate ions slowly disproportionate in alkaline solution as `

Last Answer : `XeO_(3)` forms xenate ion in alkaline medium. `XeO_(3) +NaOH rarr Na[HXeO_(4)]` But the xenate ions slowly ... `Na_(4)XeO_(6)` D. `Na_(4)XeO_(4)`

Description : `CH_(3)COOH overset((i) PCl_(3)+Cl_(2) ("excess"))underset((ii) O_(2))to (X) overset(SOCl_2) to (Y) overset(H_(2)//Pd//BaSO_(4))to(Z) overset(OH^(-))t

Last Answer : `CH_(3)COOH overset((i) PCl_(3)+Cl_(2) ("excess"))underset((ii) O_(2))to (X) overset(SOCl_2) to (Y) ... W+S ` Write the structure of X,Y,Z , W and S

Description : `CH_(3)COOH overset((i) PCl_(3)+Cl_(2) ("excess"))underset((ii) O_(2))to (X) overset(SOCl_2) to (Y) overset(H_(2)//Pd//BaSO_(4))to(Z) overset(OH^(-))t

Last Answer : `CH_(3)COOH overset((i) PCl_(3)+Cl_(2) ("excess"))underset((ii) O_(2))to (X) overset(SOCl_2) to (Y) ... W+S ` Write the structure of X,Y,Z , W and S

Description : `[X]+H_(2)SO_(4) rarr [Y]` a colourless gas with irritating smell `[Y] + K_(2)Cr_(2)O_(7) + H_(2)SO_(4) rarr` green solution `[X]` and `[Y]` are

Last Answer : `[X]+H_(2)SO_(4) rarr [Y]` a colourless gas with irritating smell `[Y] + K_(2)Cr_(2)O_(7) + H_(2)SO_(4) rarr ... 2-), H_(2)S` D. `CO_(3)^(2-), CO_(2)`

Description : The compound X and Y in below reaction can be `Ph-NH*NH_(2)+ (X) + (Y) overset(-H_(2)O)(to)`

Last Answer : The compound X and Y in below reaction can be `Ph-NH*NH_(2)+ (X) + (Y) overset(-H_(2)O)(to)` A. ` ... =O + CH_(3)-underset(overset(||)(O))(C)-CH_(3)`

Description : In the given reaction sequence `C_(6)H_(5)-CH_(2)-NH_(2) overset(CHCl_(3)//Alc.KOH)underset(Delta)rarr [X] overset(H_(2)O //NaOH)rarr [Y],[Y]` will be

Last Answer : In the given reaction sequence `C_(6)H_(5)-CH_(2)-NH_(2) overset(CHCl_(3)//Alc.KOH)underset(Delta)rarr [X] ... -NH_(2)` D. `C_(6)H_(5)-CH_(2)OH`

Description : A compound X of the formula `C_(2)H_(6)O` on reaction with Na metal gave Y, X also reacts with `PC1_(5)` to give Z the product obtained in the reactio

Last Answer : A compound X of the formula `C_(2)H_(6)O` on reaction with Na metal gave Y, X also reacts with `PC1_(5)` to ... )H_(5)` D. `C_(2)H_(5)OC_(2)H_(5)`

Description : What are X and Y in the reaction `C_(2)H_(4) + H_(2)SO_(4) overset(80^(@)C)rarr X overset(H_(2)O//Delta)rarr Y`

Last Answer : What are X and Y in the reaction `C_(2)H_(4) + H_(2)SO_(4) overset(80^(@)C)rarr X overset(H_(2)O//Delta) ... C_(2)H_(5)OH` D. `C_(2)H_(2), CH_(3)CHO`

Description : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal The heat of formation of methane in Kcal will b

Last Answer : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal ... `-45.9` B. `-47.8` C. `-20.0` D. `-47.3`

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric coefficients of `Mno_(4)^(-),C_(2)O_(4)^(

Last Answer : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric ... . 16, 5, 2 C. 2, 16, 5 D. 5, 2, 16

Description : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :-

Last Answer : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :- A. 2 B. 4 C. 5 D. 10

Description : `H_(2)O_(2)+H_(2)O_(2)rarr2H_(2)O+O_(2)` is an example of dispropotionation because -

Last Answer : `H_(2)O_(2)+H_(2)O_(2)rarr2H_(2)O+O_(2)` is an example of dispropotionation ... D. Oxidation number of oxygen neither decreases nor increases

Description : P and Q are isomer of dicraboxylic acid `C_(4)H_(4)O_(4)` Both decolourixe `Br_(2)//H_(2)O`. On heating , P forms the cyclic anhydride. Upon treatment

Last Answer : P and Q are isomer of dicraboxylic acid `C_(4)H_(4)O_(4)` Both decolourixe `Br_(2)//H_(2)O`. On ... sequences V and W are respectively A. B. C. D.

Description : `P` and `Q` are isomers of dicarboxylic acid `C_(4)H_(4)O_(4)`. Bothdecolorize `Br_(2)//H_(2)O`. On heating, `P` forms the cyclic anhydride. Upon trea

Last Answer : `P` and `Q` are isomers of dicarboxylic acid `C_(4)H_(4)O_(4)`. Bothdecolorize `Br_(2)// ... . Optically inactive pair (T, U) and optically inactive S

Description : (mixture of alkenes) `overset((i) O_(3))underset((ii) Zn//H_(2)O)to` (mixture of carbonyl compounds). The incorrect statement is

Last Answer : (mixture of alkenes) `overset((i) O_(3))underset((ii) Zn//H_(2)O)to` (mixture of ... KOH D. Only two carbonyl compounds give positive idoform test

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : (mixture of alkenes) `overset((i) O_(3))underset((ii) Zn//H_(2)O)to` (mixture of carbonyl compounds). The incorrect statement is

Last Answer : (mixture of alkenes) `overset((i) O_(3))underset((ii) Zn//H_(2)O)to` (mixture of ... KOH D. Only two carbonyl compounds give positive idoform test

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : `5H_(2)C_(2)O_(4)(aq)+2MnO_(4)(aq)+6H^(+)(aq) to 2Mn^(2+)(aq)+10CO_(2)(g)+8H_(2)O(l)` Oxalic acid, `H_(2)C_(2)O_(2)` , reacts with permanganate ion ac

Last Answer : `5H_(2)C_(2)O_(4)(aq)+2MnO_(4)(aq)+6H^(+)(aq) to 2Mn^(2+)(aq)+10CO_(2)(g)+8H_(2)O(l)` Oxalic acid, `H_ ... A. 13.5 mL B. 18.5 mL C. 33.8 mL D. 84.4 mL

Description : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_(2)O_(4)` solution react with o.1 mL of previous `K

Last Answer : If 1 mL of a `KMnO_(4)` solution react with 0.140g `Fe^(2+)` and if 1 mL of `KHV_(2)O_(4)`. `H_(2C_( ... 15/6 mL B. 13/16 C. `11/14` D. None of these

Description : 125mL of 63% (w/v) `H_(2)C_(2)O_(4).2H_(2)O` solution is made to react with 125mL of a `40%` (w/v) `NaOH` solution. The resulting solution is : (ignor

Last Answer : 125mL of 63% (w/v) `H_(2)C_(2)O_(4).2H_(2)O` solution is made to react with 125mL of a ... ions) A. netural B. acidic C. strongly acidic D. alkaline

Description : The oxidation number and co-ordination number of chromium in complex ion `[Cr(C_(2)O_(4))_(2)(H_(2)O)_(2)]^(-)` are

Last Answer : The oxidation number and co-ordination number of chromium in complex ion `[Cr(C_(2)O_(4))_(2)(H_(2)O)_(2)]^(-)` are A. 3,6 B. 2,6 C. 2,8 D. 3,8

Description : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2)(O_(2))(NH_(3))]` respectively are :

Last Answer : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2 ... and +4` C. `+3,+4 and +6` D. `+3,+2 and +4`

Description : Among the complex ions, `[Co(NH_(2) - CH_(2) - CH_(2) - NH_(2))_(2) Cl_(2)]^(+), [CrCl_(2) (C_(2)O_(4))_(2)]^(3-)` `[Fe(H_(2)O)_(4) (OH)_(2)]^(+), [Fe

Last Answer : Among the complex ions, `[Co(NH_(2) - CH_(2) - CH_(2) - NH_(2))_(2) Cl_(2)]^(+), [CrCl_(2) ... (3)) Cl]^(2+)` and that show(s) cis-trans isomerism is

Description : What is the charge on the complex `[Cr(C_(2)O_(4))_(2)(H_(2)O)_(2)]` formed by Cr(III) ?

Last Answer : What is the charge on the complex `[Cr(C_(2)O_(4))_(2)(H_(2)O)_(2)]` formed by Cr(III) ? A. `+3` B. `+1` C. `+2` D. `-1`

Description : The oxidation state of mo in its oxido-complex - complex species `[Mo_(2)O_(4)[C_(2)H_(4))_(2)(H_(2)O)]^(2-)` is

Last Answer : The oxidation state of mo in its oxido-complex - complex species `[Mo_(2)O_(4)[C_(2)H_(4))_(2)(H_(2)O)]^(2-)` is A. `+2 ` B. `+3` C. `+4` D. `+5`

Description : Match the following `{:("List I","ListII"),("(A) Feldspar",(I) [Ag_(3)SbS_(3)]),("(B) Asbestors",(II) Al_(2)O_(3)H_(2)O),("(C) Pyrargyrite",(III) MgSO

Last Answer : Match the following `{:("List I","ListII"),("(A) Feldspar",(I) [Ag_(3)SbS_(3)]),("(B) Asbestors",(II) Al_(2)O_( ... (,(A),(B),(C),(D)),(,II,V,IV,I):}`

Description : `XeF_(2)+H_(2)O overset("alkali")rarr A +HF +O_(2)`, then A is

Last Answer : `XeF_(2)+H_(2)O overset("alkali")rarr A +HF +O_(2)`, then A is A. `XeO_(3)` B. `XeO_(4)` C. `XeO_(2)F_(2)` D. `Xe`

Description : The correct order of O - O bond length in `O_(2)H_(2)O_(2)` and `O_(3)` is

Last Answer : The correct order of O - O bond length in `O_(2)H_(2)O_(2)` and `O_(3)` is A. `O_(2)gtO_(3)gtH_(2)O_( ... )O_(2)gtO_(2)` D. `H_(2)O_(2)gtO_(3)gtO_(2)`