`Delta_(f)^(@)` for `CO_(2(g)), CO_((g))` and `H_(2)O_((g))` are `-393.5,-110.5` and `-241.8kJ mol^(-1)` respectively. The standard enthalpy change `(

1 Answer

Answer :

`Delta_(f)^(@)` for `CO_(2(g)), CO_((g))` and `H_(2)O_((g))` are `-393.5,-110.5` and `-241.8kJ mol^(-1 ... A. `524.1` B. `41.2` C. `-262.5` D. `-41.2`

Related questions

Description : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 kJ / mol respectively. For the reaction `N_(2)

Last Answer : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 ... is A. `-212` B. `+212` C. `+778` D. `-778`

Description : What is the standard enthalpy change at 298 K for the following reaction? `CO_(2) (g)+ C("diamond") rarr 2CO(g)` Given : `DeltaH_(f)^(@)(CO,g) = - 110

Last Answer : What is the standard enthalpy change at 298 K for the following reaction? `CO_(2) (g)+ C("diamond") rarr 2CO(g ... `+172.5 kJ//mol` D. `170.5 kJ//mol`

Description : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) +3H_(2)O (l)` at `27^(@)C` is `-1366.5 kJ mol^(

Last Answer : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) + ... 1369. kJ` C. `-1364.0 kJ` D. `-1361.5 kJ`

Description : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat of combustion when one mole of graphite bu

Last Answer : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat ... B. `-284` KJ C. `-394` KJ D. `-504` KJ

Description : The enthalpy of combustion of `H_(2)` , cyclohexene `(C_(6)H_(10))` and cyclohexane `(C_(6)H_(12))` are `-241` , `-3800` and `-3920KJ` per mol respect

Last Answer : The enthalpy of combustion of `H_(2)` , cyclohexene `(C_(6)H_(10))` and cyclohexane `(C_(6)H_(12))` are `-241 ... "KJ mol"^(-1)` D. `242 "KJ mol^(-1)`

Description : At `25^(@)` C for complete combustion of 5 mol propane `(C_(3)H_(8))` . The required volume of `O_(2)` at STP will be .

Last Answer : At `25^(@)` C for complete combustion of 5 mol propane `(C_(3)H_(8))` . The required volume of `O_(2)` at ... . A. 560 L B. 560 mL C. 360 L D. 360 mL

Description : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then predict the colour of the complex using the following tab

Last Answer : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then ... -34)J-sec,N_(A)=6xx10^(23)c=3xx10^(8) m//sec)`

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal/mol. The `Delta H` for `CH_(4)+C_(2)Hrarr C_(3)

Last Answer : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal ... . `-30.2` Kcal C. 55.2 Kcal D. `-19.4` Kcal

Description : The enthalpy and entropy change for the reaction, `Br_(2)(l)+Cl_(2)(g)rarr2BrCl(g)` are `30KJmol^(-1)` and `105JK^(-1)mol^(-1)` respectively. The temp

Last Answer : The enthalpy and entropy change for the reaction, `Br_(2)(l)+Cl_(2)(g)rarr2BrCl(g)` are `30KJmol^(-1)` and ` ... 285.7 K B. 273 K C. 450 K D. 300 K

Description : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^(@)=-360` kJ/mol (B) `C_("(gra)")+1/2 O_(2(g)) rarr

Last Answer : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^( ... a) and (b) are true D. both (a) and (b) false

Description : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at `300 K` If `C_(P,A) = 20 J//K mol` and `C_(P,B) = 20

Last Answer : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at ... G` is negative D. At `T = 200, Delta G` is zero

Description : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g),DeltaH=498kJ mol^(-1)` `OH(g) rarr H(g)+O

Last Answer : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g), ... KJ mol"^(-1)` D. `463 "KJ mol"^(-1)`

Description : The heat of combustion of `CH_(4(g)), C_((g))` and `H_(2(g))` at `25^(@)C` are `-212.4` K cal, -94.0 K cal and -68.4 K cal respectively, the heat of f

Last Answer : The heat of combustion of `CH_(4(g)), C_((g))` and `H_(2(g))` at `25^(@)C` are `-212.4` K cal, -94.0 ... .4` K cal C. `-375.2` K cal D. `+212.8` K cal

Description : Since the enthalpy of elements in their natural state is taken to be zero, the heat of formation `(Delta_(f)H)` of compounds

Last Answer : Since the enthalpy of elements in their natural state is taken to be zero, the heat of formation `( ... C. is zero D. May be positive or negative

Description : The volume strength of `1M H_(2)O_(2)` is (Molar mass of `H_(2)O_(2) = 34 g mol^(-1)`)

Last Answer : The volume strength of `1M H_(2)O_(2)` is (Molar mass of `H_(2)O_(2) = 34 g mol^(-1)`) A. `11.35` B. `22.4` C. `16.8` D. `5.6`

Description : What shows that the formation of CO 2 releases 393.5 kJ mol?

Last Answer : C(s) + O2(g) + CO2(g) + 393.5 kJ

Description : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` and boiling point of ethanol is `78.5^(@)`.

Last Answer : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` ... KJ mol^(-1)` D. Some more data is required

Description : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal The heat of formation of methane in Kcal will b

Last Answer : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal ... `-45.9` B. `-47.8` C. `-20.0` D. `-47.3`

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : Standard enthalpy of formation of ethane is -84.7kjper mol calculate the enthalpy change for the formation of 0.1kg ethane

Last Answer : Standard enthalpy of formation of ethane is -84.7kjper mol calculate the enthalpy change for the formation of 0.1kg ethane

Description : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g)rarr N_(2)(g)+3H_(2)(g)` is :

Last Answer : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g) ... mol^(-1)` D. `-92.0 KJ mol^(-1)`

Description : Ionization enthalpy of Li is 520 kJ mol^(-1) while that of F is 1681 kJ mol^(-1) . Explain.

Last Answer : Ionization enthalpy of Li is 520 kJ mol-1 while that of F is 1681 kJ mol-1. Explain.

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2)`,`SO_(2)`,`H_(2)O`,`H_(2)SO_(4)`,`P_(

Last Answer : Among the following, the number of compounds that can react with `PCl_(5)` to give `POCl_(3)` is `O_(2)`,`CO_(2) ... 2)O`,`H_(2)SO_(4)`,`P_(4)O_(10)`.

Description : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

Last Answer : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Description : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric coefficients of `Mno_(4)^(-),C_(2)O_(4)^(

Last Answer : For the redox reation `MnO_(4)^(-)+C_(2)O_(4)^(2-)+H^(+)rarrMn^(2+)CO_(2)+H_(2)O` The correct stoichiometric ... . 16, 5, 2 C. 2, 16, 5 D. 5, 2, 16

Description : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :-

Last Answer : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :- A. 2 B. 4 C. 5 D. 10

Description : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3), HNO_(3), H_(3)PO_(3)`. (a) Among the above compounds, co

Last Answer : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3 ... `d pi - p pi` bond are y. Given the answer as `x + y`

Description : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3), HNO_(3), H_(3)PO_(3)`. (a) Among the above compounds, co

Last Answer : `N_(2)O_(4), (HPO_(2))_(2), H_(2)CO_(3), SO_(2), SO_(3), P_(4)O_(10) H_(2)SO_(4), N_(2)O_(3 ... `d pi - p pi` bond are y. Given the answer as `x + y`

Description : For a reaction `2X(s)+2Y(s)rarr 2Cl(l)+D(g)` The `q_(p)` at `27^(@)C` is -28 K Cal. `mol^(-1)`. The `q_(V)` is ___________ K. Cal. `mol^(-1)` :-

Last Answer : For a reaction `2X(s)+2Y(s)rarr 2Cl(l)+D(g)` The `q_(p)` at `27^(@)C` is -28 K Cal. `mol^(-1)`. The `q_( ... . `-27.4` B. `+27.4` C. `-28.6` D. `28.6`

Description : For a gaseous reaction, `A(g)+3B(g)to3C(g)+3D(g),DeltaU` is 17 kcal at `27^(@)C`. Assuming `R=2cal" "K^(-1)mol^(-1)`, the value of `DeltaH` for the ab

Last Answer : For a gaseous reaction, `A(g)+3B(g)to3C(g)+3D(g),DeltaU` is 17 kcal at `27^(@)C`. Assuming `R=2cal" " ... Kcal B. 18.2 Kcal C. 20.0 Kcal D. 16.4 Kcal

Description : What volume of oxygen gas `(O_(2))` measured at `0^(@)C` and 1 atm, is needed to burn completely 1L of propane gas `(C_(3)H_(8))` measured under the s

Last Answer : What volume of oxygen gas `(O_(2))` measured at `0^(@)C` and 1 atm, is needed to burn completely 1L of propane gas ... ? A. 5 L B. 10 L C. 7 L D. 6 L

Description : 1 mol of `H_(3)PO_(2), H_(3)PO_(3)` and `H_(3)PO_(4)` will neutralise x mol `NaOH`, y mol of `Ca(OH)_(2)` and z mol of `Al(OH)_(3)` respectively (assu

Last Answer : 1 mol of `H_(3)PO_(2), H_(3)PO_(3)` and `H_(3)PO_(4)` will neutralise x mol `NaOH`, y mol of `Ca(OH)_(2)` and ... :1` B. `1:2:3` C. `3:2:1` D. `1:1:1`

Description : Heat of reaction for, `CO(g)+1//2O_(2)(g)rarr CO_(2)(g)` at constant V is -67.71 K cal at `17^(@)C` . The heat of reaction at constant P at `17^(@)C`

Last Answer : Heat of reaction for, `CO(g)+1//2O_(2)(g)rarr CO_(2)(g)` at constant V is -67.71 K cal at `17^(@)C` . ... B. `+68.0` K cal C. `-67.4` K cal D. None

Description : In conversion of lime-stone to lime, `CaCO_(3(s)) to CaO_((s)) + CO_(2(g))` the values of `DeltaH^@` and `DeltaS^@` are `+179.1 kJmol^(-1)` and `160.2

Last Answer : In conversion of lime-stone to lime, `CaCO_(3(s)) to CaO_((s)) + CO_(2(g))` the values of `DeltaH^@` and ... : A. 1008 K B. 1200 K C. 845 K D. 1118 K

Description : The enthalpy change for the reaction `2C("graphite")+3H_(2)(g)rarrC_(2)H_(6)(g)` is called

Last Answer : The enthalpy change for the reaction `2C("graphite")+3H_(2)(g)rarrC_(2)H_(6)(g ... combustion C. Enthalpy of hydrogenation D. Enthalpy of vaporisation

Description : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The entropy change for the process would be

Last Answer : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The ... K^(-1)` D. `100 J mol^(-1)K^(-1)`

Description : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs spontaneously at `298 K`, the entropy change at that

Last Answer : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs ... (-1)` C. Cannot be negative D. Cannot be positive

Description : Bond dissociation enthalpy of `H_(2)` , `Cl_(2)` and `HCl` are `434, 242` and `431KJmol^(-1)` respectively. Enthalpy of formation of `HCl` is

Last Answer : Bond dissociation enthalpy of `H_(2)` , `Cl_(2)` and `HCl` are `434, 242` and `431KJmol^(-1)` respectively. ... kJ mol^(-1)` D. `-245 kJ mol^(-1)`

Description : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. From the above reactions find how much heat (Kca

Last Answer : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. ... g)` A. `20.6` B. `26.3` C. `44.2` D. `161.6`

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is ... ` D. `Delta H` is independent of physical state of reactants

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at ... ` C. `Delta H lt Delta E` D. None of the above

Description : 0.6 g of carbon was burnt in the air to form `CO_(2)`. The number of molecules of `CO_(2)` introduced into the will be : `C+O_(2)toCO_(2)`

Last Answer : 0.6 g of carbon was burnt in the air to form `CO_(2)`. The number of molecules of `CO_(2)` introduced into ... C. `6.02xx10^(22)` D. `3.01xx10^(22)`

Description : Standard entropy of `X_(2)` , `Y_(2)` and `XY_(3)` are `60, 40 ` and `50JK^(-1)mol^(-1)` , respectively. For the reaction, `(1)/(2)X_(2)+(3)/(2)Y_(2)r

Last Answer : Standard entropy of `X_(2)` , `Y_(2)` and `XY_(3)` are `60, 40 ` and `50JK^(-1)mol^(-1)` , respectively ... be: A. 500 K B. 750 K C. 1000 K D. 1250 K

Description : Consider the following reaction at `1000^(@)C` `(A) Zn_((s))+(1)/(2)O_(2(s))+ZnO_(s),DeltaG^(0)=-360kJ"mole"^(-1)` (B) `(B) Cn_((s))+(1)/(2)O_(2(g))to

Last Answer : Consider the following reaction at `1000^(@)C` `(A) Zn_((s))+(1)/(2)O_(2(s))+ZnO_(s),DeltaG^ ... 1 and 2 are true D. Both statement 1 and 2 are false

Description : 44 g of a sample of organic compound on complet combustion gives 88 g `CO_(2)` and 36 g of `H_(2)O` . The molecular formula of the compound may be :-

Last Answer : 44 g of a sample of organic compound on complet combustion gives 88 g `CO_(2)` and 36 g of `H_(2)O` . The ... . `C_(2)H_(4)O` D. `C_(3)H_(6)O`

Description : For a reaction `H_(2(g))+I_(2(g))rArr2HI_((g))at 721^(@)C` the value of equilibrium constant is 50 . If 0.5 moles each of `H_(2)` & `I(2)` is added to

Last Answer : For a reaction `H_(2(g))+I_(2(g))rArr2HI_((g))at 721^(@)C` the value of equilibrium constant is 50 . ... constant will be . A. 100 B. 25 C. 50 D. 200

Description : The oxidation state of sulhur in `H_(2)SO_(5)` and chromium in `K_(2)Cr_(2)O_(7)` respectively is :-

Last Answer : The oxidation state of sulhur in `H_(2)SO_(5)` and chromium in `K_(2)Cr_(2)O_(7)` respectively is :- A. 8, 6 B. 4, 6 C. 8, 8 D. 6, 6

Description : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)(g), Delta H=-152` Kcal Then, `Na(s)+0.5Cl_(2)(g)rarr Na

Last Answer : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)( ... ` A. 108 Kcal B. 196 Kcal C. `-98` Kcal D. 54 Kcal