What is the standard enthalpy change at 298 K for the following reaction? `CO_(2) (g)+ C("diamond") rarr 2CO(g)` Given : `DeltaH_(f)^(@)(CO,g) = - 110

1 Answer

Answer :

What is the standard enthalpy change at 298 K for the following reaction? `CO_(2) (g)+ C("diamond") rarr 2CO(g ... `+172.5 kJ//mol` D. `170.5 kJ//mol`

Related questions

Description : `Delta_(f)^(@)` for `CO_(2(g)), CO_((g))` and `H_(2)O_((g))` are `-393.5,-110.5` and `-241.8kJ mol^(-1)` respectively. The standard enthalpy change `(

Last Answer : `Delta_(f)^(@)` for `CO_(2(g)), CO_((g))` and `H_(2)O_((g))` are `-393.5,-110.5` and `-241.8kJ mol^(-1 ... A. `524.1` B. `41.2` C. `-262.5` D. `-41.2`

Description : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at `298 K`. What is `Delta U` at `298 K`?

Last Answer : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at ` ... -87.42 kJ` C. `-97.34 kJ` D. `-89.9 kJ`

Description : Heat of reaction for, `CO(g)+1//2O_(2)(g)rarr CO_(2)(g)` at constant V is -67.71 K cal at `17^(@)C` . The heat of reaction at constant P at `17^(@)C`

Last Answer : Heat of reaction for, `CO(g)+1//2O_(2)(g)rarr CO_(2)(g)` at constant V is -67.71 K cal at `17^(@)C` . ... B. `+68.0` K cal C. `-67.4` K cal D. None

Description : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g),DeltaH=498kJ mol^(-1)` `OH(g) rarr H(g)+O

Last Answer : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g), ... KJ mol"^(-1)` D. `463 "KJ mol"^(-1)`

Description : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 kJ / mol respectively. For the reaction `N_(2)

Last Answer : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 ... is A. `-212` B. `+212` C. `+778` D. `-778`

Description : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat of combustion when one mole of graphite bu

Last Answer : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat ... B. `-284` KJ C. `-394` KJ D. `-504` KJ

Description : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) +3H_(2)O (l)` at `27^(@)C` is `-1366.5 kJ mol^(

Last Answer : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) + ... 1369. kJ` C. `-1364.0 kJ` D. `-1361.5 kJ`

Description : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs spontaneously at `298 K`, the entropy change at that

Last Answer : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs ... (-1)` C. Cannot be negative D. Cannot be positive

Description : Structure of `N_(2)O` is `N = N = O`. Calculate bond enthalphy of `N = N` bond in `N_(2)O`. Given : `{:(DeltaH_(f,N_(2)O)^(@)=100 "kJmol"^(-1)" "BE_(N

Last Answer : Structure of `N_(2)O` is `N = N = O`. Calculate bond enthalphy of `N = N` bond in `N_(2)O`. Given : `{:( ... )` C. `400 kJ mol^(-1)` D. `420 mol^(-1)`

Description : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. From the above reactions find how much heat (Kca

Last Answer : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. ... g)` A. `20.6` B. `26.3` C. `44.2` D. `161.6`

Description : Which of the following value of `DeltaH_(f)^(@)` represent that the product is least stable ?

Last Answer : Which of the following value of `DeltaH_(f)^(@)` represent that the product is least stable ? A. `-94` K cal B. ... C. `+21.4` K cal D. `+64.8` K cal

Description : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_(2),Delta H=-283.2` KJ the heat of reacti

Last Answer : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_( ... 7` KJ C. `-172.7` KJ D. `+172.7` KJ

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is ... ` D. `Delta H` is independent of physical state of reactants

Description : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at constant T and P ?

Last Answer : For the reaction `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g)` Which one of the statement is correct at ... ` C. `Delta H lt Delta E` D. None of the above

Description : For a reaction `2X(s)+2Y(s)rarr 2Cl(l)+D(g)` The `q_(p)` at `27^(@)C` is -28 K Cal. `mol^(-1)`. The `q_(V)` is ___________ K. Cal. `mol^(-1)` :-

Last Answer : For a reaction `2X(s)+2Y(s)rarr 2Cl(l)+D(g)` The `q_(p)` at `27^(@)C` is -28 K Cal. `mol^(-1)`. The `q_( ... . `-27.4` B. `+27.4` C. `-28.6` D. `28.6`

Description : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g)rarr N_(2)(g)+3H_(2)(g)` is :

Last Answer : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g) ... mol^(-1)` D. `-92.0 KJ mol^(-1)`

Description : Which of the following reactions occuring during coal gasification is called the Neumann reversal reaction? (A) 2CO ↔ C + CO2 (B) CO + H2O ↔ CO2 + H2 (C) C + H2O ↔ CO + H2 (D) C + 2H2O ↔ CO2 + 2H2

Last Answer : (A) 2CO ↔ C + CO2

Description : `Delta S` for the reaction , `MgCO_(3)(s)rarr MgO(s)+CO_(2)(g)` will be :

Last Answer : `Delta S` for the reaction , `MgCO_(3)(s)rarr MgO(s)+CO_(2)(g)` will be :

Description : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` and boiling point of ethanol is `78.5^(@)`.

Last Answer : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` ... KJ mol^(-1)` D. Some more data is required

Description : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal The heat of formation of methane in Kcal will b

Last Answer : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal ... `-45.9` B. `-47.8` C. `-20.0` D. `-47.3`

Description : A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of 2.8 kPa at 298 K. Further 18 g of water is added to this solution. The new vapour pressure ... K. Calculate (i) the molecular mass of solute and (ii) vapour pressure of water at 298 K -Chemistry

Last Answer : For a very dilute solution ∴ Molecular mass, MB = 34 g/mol.

Description : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at `300 K` If `C_(P,A) = 20 J//K mol` and `C_(P,B) = 20

Last Answer : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at ... G` is negative D. At `T = 200, Delta G` is zero

Description : The heat of combustion of `CH_(4(g)), C_((g))` and `H_(2(g))` at `25^(@)C` are `-212.4` K cal, -94.0 K cal and -68.4 K cal respectively, the heat of f

Last Answer : The heat of combustion of `CH_(4(g)), C_((g))` and `H_(2(g))` at `25^(@)C` are `-212.4` K cal, -94.0 ... .4` K cal C. `-375.2` K cal D. `+212.8` K cal

Description : Write an expression in the form of chemical equation for the standard enthalpy of formation (∆Hf) of CO (g).

Last Answer : Ans. C(s) +1/2 O2(g) → CO (g)

Description : In the reaction sequence `underset(350^(@))overset(NaOH)rarr A overset(CH_(3)I)rarr B overset(HI)rarr C+D` ltbr. A, B, C, and D are given by the set :

Last Answer : In the reaction sequence `underset(350^(@))overset(NaOH)rarr A overset(CH_(3)I)rarr B overset(HI)rarr C+D` ltbr ... , `C_(6)H_(5)l, C_(2)H_(5)OH`

Description : In conversion of lime-stone to lime, `CaCO_(3(s)) to CaO_((s)) + CO_(2(g))` the values of `DeltaH^@` and `DeltaS^@` are `+179.1 kJmol^(-1)` and `160.2

Last Answer : In conversion of lime-stone to lime, `CaCO_(3(s)) to CaO_((s)) + CO_(2(g))` the values of `DeltaH^@` and ... : A. 1008 K B. 1200 K C. 845 K D. 1118 K

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3 is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit ... /kmole. K (may be assumed to be independent of temperature)) (A) 400 (B) 500 (C) 600 (D) 1000

Last Answer : (C) 600

Description : For the irreversible reaction, Ca+ 2C = Ca C2, Δ H°298 = - 60000 J . mole-1. If a system initially containing 2 moles of calcium, 3 moles of carbon and 1 mole of calcium carbide is allowed to react to completion, the heat evolved ... will be (A) 30,000 J (B) 60,000 J (C) 90,000 J (D) 2,40,000 J

Last Answer : (C) 90,000 J

Description : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)(g), Delta H=-152` Kcal Then, `Na(s)+0.5Cl_(2)(g)rarr Na

Last Answer : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)( ... ` A. 108 Kcal B. 196 Kcal C. `-98` Kcal D. 54 Kcal

Description : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^(@)=-360` kJ/mol (B) `C_("(gra)")+1/2 O_(2(g)) rarr

Last Answer : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^( ... a) and (b) are true D. both (a) and (b) false

Description : The reaction, C + CO2 ↔ 2CO, taking place during coal gasification is called the __________ reaction. (A) Neumann reversal (B) Shift conversion (C) Boudouard (D) Reduction

Last Answer : (C) Boudouard

Description : For a gaseous reaction, `A(g)+3B(g)to3C(g)+3D(g),DeltaU` is 17 kcal at `27^(@)C`. Assuming `R=2cal" "K^(-1)mol^(-1)`, the value of `DeltaH` for the ab

Last Answer : For a gaseous reaction, `A(g)+3B(g)to3C(g)+3D(g),DeltaU` is 17 kcal at `27^(@)C`. Assuming `R=2cal" " ... Kcal B. 18.2 Kcal C. 20.0 Kcal D. 16.4 Kcal

Description : For a reaction `CH_(3)OCH_(3) (g) rarr CH_(4) (g)+H_(2) (g)+CO(g)` at 750K, the rate constant is `3.52xx10^(-3)" min"^(-1)`. Starting with a pressure

Last Answer : For a reaction `CH_(3)OCH_(3) (g) rarr CH_(4) (g)+H_(2) (g)+CO(g)` at 750K, the rate constant ... to become 760 mm Hg ? (Take log 2.25 = 0.352)

Description : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal

Last Answer : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal ... compound C. The reaction is endothermic D. None of the above

Description : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_(3))rarr` ……?

Last Answer : Which of the following is produced during the following reaction ? `CO(g)+H_(2)overset(575K)underset(ZnO,Cr_(2)O_ ... 3)COOH` C. `HCOOH` D. `CH_(3)OH`

Description : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

Last Answer : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Description : The reaction, `C_(6)H_(5)ONa +CO_(2)+H_(2)O rarr C_(6)H_(5)OH+NaHCO_(3)` suggests that `:`

Last Answer : The reaction, `C_(6)H_(5)ONa +CO_(2)+H_(2)O rarr C_(6)H_(5)OH+NaHCO_(3)` suggests that ... C. Water is stronger acid than phenol D. None of the above

Description : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN)rarr(B)overset(H^(+)//H_(2)O)rarr(C)` the pr

Last Answer : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN ... COOH` C. `C_(6)H_(5)OH` D. none of these

Description : What are X and Y in the reaction `C_(2)H_(4) + H_(2)SO_(4) overset(80^(@)C)rarr X overset(H_(2)O//Delta)rarr Y`

Last Answer : What are X and Y in the reaction `C_(2)H_(4) + H_(2)SO_(4) overset(80^(@)C)rarr X overset(H_(2)O//Delta) ... C_(2)H_(5)OH` D. `C_(2)H_(2), CH_(3)CHO`

Description : For the process : `H_(2)O (l, 1 atm, 373 K) rArr H_(2)O(g, 1 atm, 373 K)` [Given normal boiling point of water `= 373` K at 1 atm pressure.] The corre

Last Answer : For the process : `H_(2)O (l, 1 atm, 373 K) rArr H_(2)O(g, 1 atm, 373 K)` [Given normal boiling ... lt 0, DeltaU gt 0, Delta H = 0` D. none of these

Description : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will correspond to

Last Answer : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will ... . (B)Q C. (C)R D. (D)S

Description : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l)Delta H` and `Delta E` both are zero. Reason :- During isothermal

Last Answer : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l) ... Reason is False. D. If both Assertion & Reason are false.

Description : The change in the enthalpy of `NaOH+HCl rarr NaCl+H_(2)O` is called :

Last Answer : The change in the enthalpy of `NaOH+HCl rarr NaCl+H_(2)O` is called : A. Heat of ... of reaction C. Heat of hydration D. Heat of solution

Description : For the reaction `2CI F_(3)(g) harr CI_(2)(g) +3F_(2)(g) log K_(eq) vs (1)/(T)` (where temperature is in K) curve is obtained as given. Which of the f

Last Answer : For the reaction `2CI F_(3)(g) harr CI_(2)(g) +3F_(2)(g) log K_(eq) vs (1)/(T)` ( ... catalyst at equilibrium D. Removal of `F_(2)(g)` at equilibrium

Description : In which of the following reactions, standard reaction entropy change (S°) is positive and standard Gibb's energy change (G°) decreases sharply with increasing temperature? (1) 2 2 1 1 1 C graphite O (g) CO (g) 2 2 2   (2) 2 1 C ... CO(g) O (g) CO (g) 2   (4) 2 1 Mg(s) O (g) MgO(s) 2  

Last Answer : C graphite O (g) CO(g)

Description : Find the value of k. Round answer and then write it in scientific method. K= 3,621,873.124²/ 27, 298.090³?

Last Answer : 1/101 is then added

Description : What would be the reduction potential of an electrode at 298 K , which originally contained ` 1K_(2)Cr_(2)O_(7)` solution in acidic buffer solution of

Last Answer : What would be the reduction potential of an electrode at 298 K , which originally contained ` 1K_(2)Cr_(2)O_(7)` ... V` C. `1.187 V` D. None of these

Description : A 500 mL glass flask is filled at 298 K and 1 atm, pressure with three diatomic gases, X, Y and Z . The initial volume ratio of the gases before mixin

Last Answer : A 500 mL glass flask is filled at 298 K and 1 atm, pressure with three diatomic gases, X, Y and Z . The ... . `H_2 , F_2 , O_2` D. `O_2,H_2 , F_2`