Find the centre of a circle passing through the points (6, –6), (3, –7) and (3, 3). -Maths 9th

1 Answer

Answer :

For three points to be collinear, the area of the triangle formed by the three points should be zero. ∴ Area of D formed by the given three points= \(rac{1}{2}\) [a((c + a) – (a + b)) + b((a + b) – (b + c)) + c((b + c) – (c + a))]= \(rac{1}{2}\) [a(c – b) + b(a – c) + c(b – a)] = \(rac{1}{2}\) [ac – ab + ba – bc + cb – ca] = 0.Hence (a, b + c), (b, c + a) and (c, a + b) are collinear.

Related questions

Description : ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. -Maths 9th

Last Answer : According to question p rove that ∠CBD +∠CDB = 1/2 ∠BAD.

Description : ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. -Maths 9th

Last Answer : According to question p rove that ∠CBD +∠CDB = 1/2 ∠BAD.

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : If points A (4, 3) and B (x, 5) are on the circle with centre O (2, 3), find the value of x. -Maths 9th

Last Answer : Since A and B lie on the circle having centre O. Therefore, OA = OB root(4−2)2+(3−3)2​=(root(x−2)2+(5−3)2​2=root(x−2)2+4​(x−2)2+4=4 (x−2)2=0 x−2=0 x=2 hope it helps thank you

Description : A circle is passing through two end points A[6,4] and B[10,10]. Find center point ofcircle a.7,8 b.8,8 c.8,7 d.7,7

Last Answer : c.8,7

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the A distance between AB and CD is 6 cm, find the radius of the circle. -Maths 9th

Last Answer : Join OA and OC. Let the radius of the circle be r cm and O be the centre Draw OP⊥AB and OQ⊥CD. We know, OQ⊥CD, OP⊥AB and AB∥CD. Therefore, points P,O and Q are collinear. So, PQ=6 cm. Let OP=x. Then, ... r2=52+(2.5)2=25+6.25=31.25 ⇒r2=31.25⇒r=5.6 Hence, the radius of the circle is 5.6 cm

Description : The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of other chord from the centre? -Maths 9th

Last Answer : There are two parallel chords of length 8 cm and 6 cm. The distance between center and shortest chord (6cm chord) is 4cm. So, the perpendicular distance from the center to the shortest chord is 4cm. The ... 32+42 =5. Since the radius is 5. The distance from center to largest chord is 52−42 =3.

Description : Draw a circle of diameter 6.4 cm. Then draw two tangents to the circle from a point P at a distance 6.4 cm from the centre of the circle. -Maths 9th

Last Answer : clear .

Description : Two circles with centre O and O' intersect at two points A and B. A line PQ is drawn parallel to OO' through B intersecting the circles at P and Q. Prove that PQ = 2 OO'. -Maths 9th

Last Answer : Solution :- Construction: Draw two circles having centres O and O' intersecting at points A and B. Draw a parallel line PQ to OO' ... iii) Again, OO' = MN [As OO' NM is a rectangle] ...(iv) ⇒ 2OO' = PQ Hence proved.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : In the given figure, O is the centre of the circle, then compare the chords. -Maths 9th

Last Answer : AB is the longest chord because it is passing through the Centre hence it is a diameter ThereforeAB>CD

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : In the given figure, O is the centre of the circle, then compare the chords. -Maths 9th

Last Answer : AB is the longest chord because it is passing through the Centre hence it is a diameter ThereforeAB>CD

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : What is the relationship between chord of a circle and a perpendicular to it from the centre? -Maths 9th

Last Answer : Solution :- Perpendicular line from the centre bisect the chord.

Description : If a circle is divided into eight equal parts, find the angle subtended by each arc at the centre. -Maths 9th

Last Answer : Total angle at centre = 360° When divided into eight part, Angle subtended by each arc = 360 / n8 = 45°

Description : In Fig. 10.17, O is the centre of a circle, find the value of x. -Maths 9th

Last Answer : Solution :- In △APB, ∠APB = 90° (Angle in the semi- circle) ∠APE + ∠ABP + ∠BAP = 180° 90° + 40° + ∠BAP = 180° ⇒ ∠BAP = 180° - 130° ⇒ ∠BAP = 50° Now, ∠BQP = ∠BAP (Angles in the same segment) ∴ x = 50°

Description : Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm. -Maths 9th

Last Answer : Let AB be a chord of circle with centre O and radius 13cm. Draw OM perpendicular AB and join OA. In the right triangle OMA, we have OA2 = OM2 + AM2 ⇒ 132 = 122 + AM2 ⇒ AM2 = 169 - 144 ... . As the perpendicular from the centre of a chord bisects the chord.Therefore, AB = 2AM = 2 x 5 = 10cm.

Description : The radius of a circle is 13 cm and the length of one of its chords is 24 cm. Find the distance of the chord from the centre. -Maths 9th

Last Answer : Let PQ be a chord of a circle with centre O and radius 13cm such that PQ = 24cm. From O, draw OM perpendicular PQ and join OP. As, the perpendicular from the centre of a circle to a chord bisects the chord. ∴ PM ... Hence, the distance of the chord from the centre is 5cm.

Description : AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the centre. Prove that -Maths 9th

Last Answer : Draw OM perpendicular AB and ON perpendicular AC Join OA. In right △OAM, OA2 = OM2 + AM2 ⇒ r2 = p2 + (1/2AB)2 (Since,OM perpendicular AB, ∴ OM bisects AB ) ⇒ 1/4AB2 = r2 - p2 or AB2 = 4r2 - 4p2 ... ) and (ii), we have 4r2 - 4p2 = 16r2 - 16q2 or r2 - p2 = 4r2 - 4q2 or 4q2 = 3r2 + p2

Description : If O is the centre of the circle and chord AB = OA and the area of triangle AOB -Maths 9th

Last Answer : (b) 16π cm2.AB = OA ⇒ AB = OA = OB (radii of circle are equal) ⇒ ΔAOB is equilateral. ∴ If ‘r’ is the radius of the circle,then area of ΔAOB = \(rac{\sqrt3}{4}\)side2⇒ \(rac{\sqrt3}{4}\)(r)2 = 4√3 (given)⇒ r2 = 16 ⇒ r = 4∴ Area of circle = πr2 = 16π cm2.

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : In the given figure, O is the centre of the circle. The radius OP bisects a rectangle ABCD at right angles. -Maths 9th

Last Answer : answer:

Description : Point A(5, 1) is the centre of the circle with radius 13 units. AB ⊥ chord PQ. B is (2, –3). The length of chord PQ is -Maths 9th

Last Answer : (c) ParallelogramAB = \(\sqrt{(4-7)^2+(5-6)^2}\) = \(\sqrt{9+1}\) = \(\sqrt{10}\)BC = \(\sqrt{(7-4)^2+(6-3)^2}\) = \(\sqrt{9+9}\) = \(3\sqrt2\)CD =\(\sqrt{(4-1)^2+(3-2) ... = \(2\sqrt{13}\)AB = CD, BC = AD and AC ≠ BD ⇒ opposite sides are equal and diagonals are not equal. ⇒ ABCD is a parallelogram.

Description : Find the value of a, if the line passing through (–5, –8) and (3, 0) is parallel to the line passing through (6, 3) and (4, a). -Maths 9th

Last Answer : Let C(x, y) be the centre of the circle passing through the points P(6, -6), Q(3, -7) and R(3, 3) Then, PC = QC = RC(Being radius of the same circle) PC2 = QC2 ⇒ (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 ⇒ x2 - ... i), we get 3\(x\) + (-2) - 7 = 0 ⇒ 3\(x\) = 9 ⇒ \(x\) = 3 ∴ The centre is (3, -2).

Description : A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent. -Maths 9th

Last Answer : According to question prove that the perpendicular bisectors of AB, BC and CA are concurrent.

Description : In figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. -Maths 9th

Last Answer : Since, A, C, D and E are four point on a circle, then ACDE is a cyclic quadrilateral. ∠ACD+ ∠AED = 180° …(i) [sum of opposite angles in a cyclic quadrilateral is 180°]