The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of other chord from the centre? -Maths 9th

1 Answer

Answer :

There are two parallel chords of length 8 cm and 6 cm.  The distance between center and shortest chord (6cm chord) is 4cm.  So, the perpendicular distance from the center to the shortest chord is 4cm.  The perpendicular line from center to chord divides chord into two equal  parts. So, the radius of circle is 32+42​=5. Since the radius is 5. The distance from center to largest chord is 52−42​=3.

Related questions

Description : Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the A distance between AB and CD is 6 cm, find the radius of the circle. -Maths 9th

Last Answer : Join OA and OC. Let the radius of the circle be r cm and O be the centre Draw OP⊥AB and OQ⊥CD. We know, OQ⊥CD, OP⊥AB and AB∥CD. Therefore, points P,O and Q are collinear. So, PQ=6 cm. Let OP=x. Then, ... r2=52+(2.5)2=25+6.25=31.25 ⇒r2=31.25⇒r=5.6 Hence, the radius of the circle is 5.6 cm

Description : The radius of a circle is 13 cm and the length of one of its chords is 24 cm. Find the distance of the chord from the centre. -Maths 9th

Last Answer : Let PQ be a chord of a circle with centre O and radius 13cm such that PQ = 24cm. From O, draw OM perpendicular PQ and join OP. As, the perpendicular from the centre of a circle to a chord bisects the chord. ∴ PM ... Hence, the distance of the chord from the centre is 5cm.

Description : The distances of two chords AB and CD from the centre of a circle are 6 cm and 8 cm respectively. Then, which chord is longer?

Last Answer : The distances of two chords AB and CD from the centre of a circle are 6 cm and 8 cm respectively. Then, which chord is longer?

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm. -Maths 9th

Last Answer : Let AB be a chord of circle with centre O and radius 13cm. Draw OM perpendicular AB and join OA. In the right triangle OMA, we have OA2 = OM2 + AM2 ⇒ 132 = 122 + AM2 ⇒ AM2 = 169 - 144 ... . As the perpendicular from the centre of a chord bisects the chord.Therefore, AB = 2AM = 2 x 5 = 10cm.

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : The base of a right prism is a trapezium. The lengths of the parallel sides are 8 cm and 14 cm and the distance between the parallel -Maths 9th

Last Answer : Area of trapezium =12×h(AB+CD) =12×8×(8+14)=12×8×(8+14) =4×22=88cm2=4×22=88cm2 = Volume of prism = Height of prism ×× area of base ⇒height×88=1056 (given)⇒height×88=1056 (given) ⇒height×88=105688⇒height×88=105688 ⇒12cm =12×h(AB+CD)

Description : AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the centre. Prove that -Maths 9th

Last Answer : Draw OM perpendicular AB and ON perpendicular AC Join OA. In right △OAM, OA2 = OM2 + AM2 ⇒ r2 = p2 + (1/2AB)2 (Since,OM perpendicular AB, ∴ OM bisects AB ) ⇒ 1/4AB2 = r2 - p2 or AB2 = 4r2 - 4p2 ... ) and (ii), we have 4r2 - 4p2 = 16r2 - 16q2 or r2 - p2 = 4r2 - 4q2 or 4q2 = 3r2 + p2

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In the given figure, O is the centre of the circle, then compare the chords. -Maths 9th

Last Answer : AB is the longest chord because it is passing through the Centre hence it is a diameter ThereforeAB>CD

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In the given figure, O is the centre of the circle, then compare the chords. -Maths 9th

Last Answer : AB is the longest chord because it is passing through the Centre hence it is a diameter ThereforeAB>CD

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : What is the relationship between chord of a circle and a perpendicular to it from the centre? -Maths 9th

Last Answer : Solution :- Perpendicular line from the centre bisect the chord.

Description : If O is the centre of the circle and chord AB = OA and the area of triangle AOB -Maths 9th

Last Answer : (b) 16π cm2.AB = OA ⇒ AB = OA = OB (radii of circle are equal) ⇒ ΔAOB is equilateral. ∴ If ‘r’ is the radius of the circle,then area of ΔAOB = \(rac{\sqrt3}{4}\)side2⇒ \(rac{\sqrt3}{4}\)(r)2 = 4√3 (given)⇒ r2 = 16 ⇒ r = 4∴ Area of circle = πr2 = 16π cm2.

Description : Point A(5, 1) is the centre of the circle with radius 13 units. AB ⊥ chord PQ. B is (2, –3). The length of chord PQ is -Maths 9th

Last Answer : (c) ParallelogramAB = \(\sqrt{(4-7)^2+(5-6)^2}\) = \(\sqrt{9+1}\) = \(\sqrt{10}\)BC = \(\sqrt{(7-4)^2+(6-3)^2}\) = \(\sqrt{9+9}\) = \(3\sqrt2\)CD =\(\sqrt{(4-1)^2+(3-2) ... = \(2\sqrt{13}\)AB = CD, BC = AD and AC ≠ BD ⇒ opposite sides are equal and diagonals are not equal. ⇒ ABCD is a parallelogram.

Description : Draw a circle of diameter 6.4 cm. Then draw two tangents to the circle from a point P at a distance 6.4 cm from the centre of the circle. -Maths 9th

Last Answer : clear .

Description : A semi-circle of diameter 14 cm has three chords of equal length connecting the two end points of the diameter so as -Maths 9th

Last Answer : (c)\(\bigg(rac{147 imes\sqrt3}{4}\bigg)\) cm2Take the trapezoid ABCD in the semi-circle with centre O such that AD = DC = CB. Now, complete the circle and draw an identical trapezoid in the other semicircle also. Then, ADCBEF ... {1}{2}\)x \(rac{3\sqrt3}{2}\) x 49 = \(rac{147 imes\sqrt3}{4}\) cm2.

Description : The radius of a circle is 10cm. The length of a chord is 12 cm. Then the distance of the chord from the centre is `"__________________"`.

Last Answer : The radius of a circle is 10cm. The length of a chord is 12 cm. Then the distance of the chord from the centre is `"__________________"`.

Description : A circle has radius √2 cm. It is divided into two segments by a chord of length 2cm.Prove that the angle subtended by the chord at a point in major segment is 45 degree . -Maths 9th

Last Answer : Given radius =2 cm Therefore AO=2 cm Let OD be the perpendicular from O on AB And AB =2cm Therefore AD=1cm (perpendicular from the centre bisects the chord) Now in triangle AOD, AO=2 cm ... by a chord at the centre is double of the angle made by the chord at any poin on the circumference)

Description : What is the radius of a circle inscribed in a triangle having side lengths 35 cm, 44 cm and 75 cm? -Maths 9th

Last Answer : (d) 6 cmLet a = 35 cm, b = 44 cm, c = 75 cm. Thens = \(rac{a+b+c}{2}\) = \(rac{34+44+75}{2}\) cm = 77 cm∴ Area if triangle = \(\sqrt{77(77-35)(77-44)(77-75)}\) cm2= \(\sqrt{77 imes42 ... ) cm2 = 462 cm2∴ Radius of incircle = \(rac{ ext{Area}}{ ext{semi-perimeter}}\) = \(rac{462}{77}\) cm = 6 cm.

Description : A chord of a circle of radius 20 cm subtends an angle of 90° at the centre. Find the area of the corresponding major segment of the circle. -Maths 10th

Last Answer : Area of the minor segment = { pi × 90 /360 - sin 45 × cos 45 } × r × r ={ 3.14 ×1/4 - 1÷√2 ×1÷√2 } × 20 × 20 = { 3.14 ... Area of major segment = area of circle - area of minor segment = 1256 - 114 = 1142 HOPE IT HELPS YOU

Description : The difference in the lengths of an arc and its subtended chord on the earth surface for a distance of 18.2 km, is only (A) 1 cm (B) 5 cm (C) 10 cm (D) 100 cm

Last Answer : (C) 10 cm

Description : In figure, AB and CD are two chords of a circle intersecting each other at point E. -Maths 9th

Last Answer : Given In a figure, two chords AB and CD intersecting each other at point E.

Description : In figure, AB and CD are two chords of a circle intersecting each other at point E. -Maths 9th

Last Answer : Given In a figure, two chords AB and CD intersecting each other at point E.

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : AC and BD are chords of a circle that bisect each other. Prove that AC and BD are diameters and ABCD is a rectangle. -Maths 9th

Last Answer : Solution :- Let AC and BD bisect each other at point 0. Then, OA = OC and OB = OD In triangles AOB and COD, we have OA = OC OB = OD and ∠ AOB = ∠ COD (Vertically opposite angles) ∴ △ AOB ... ∠ADC Also, ∠BAD = 90° = ∠BCD Also, AB = CD and BC = DA (Proved above) Hence, ABCD is a rectangle.