Five horses are in a race. Mr A. Selects two of the horses at random and bets on them. The probability that Mr A selected the winning horse is -Maths 9th

1 Answer

Answer :

(b) \(rac{2}{5}\)As each horse has equal chance of winning the race, Number of ways in which one of the five horses wins the race = 5C1 ∴ n(S) =5C1  = \(rac{|\underline5}{|\underline4|\underline1}\) 5To find the chance that Mr A selects the winning horses, it is essential that one of the two horses selected by him wins the race. E : Mr A selecting the winning horse. ⇒ n(E) = 2C1 = 2 ∴ Required probability = \(rac{n(E)}{n(S)}\) = \(rac{2}{5}\).

Related questions

Description : If the probability of winning a race of an athlete is 1 / 6 less than the twice the probability of losing the race. -Maths 9th

Last Answer : Let probability of winning the race be p Probability of losing the race = 1 - p According to the statement of question, we have p = 2 (1 - p) - 1 / 6 ⇒ 6p = 12-12p -1 ⇒ 18p = 11 ⇒ p = 11 / 18 Hence, probability of winning the race is 11 / 18

Description : If the probability of winning a race of an athlete is 1 / 6 less than the twice the probability of losing the race. -Maths 9th

Last Answer : Let probability of winning the race be p Probability of losing the race = 1 - p According to the statement of question, we have p = 2 (1 - p) - 1 / 6 ⇒ 6p = 12-12p -1 ⇒ 18p = 11 ⇒ p = 11 / 18 Hence, probability of winning the race is 11 / 18

Description : From a group of 3 man and 2 women, two person are selected at random. Find the probability that at least one women is selected. -Maths 9th

Last Answer : (b) \(rac{7}{10}\)Total number of ways of selecting 2 persons at random out of 5 persons = 5C2 ∴ n(S) = 5C2 = \(rac{|\underline5}{|\underline3|\underline2}\) = \(rac{5 imes4}{2 imes1}\) = 10Let A : Event of selecting ... = 2 3 + 1 = 7 ∴ Required probability = \(rac{n(A)}{n(S)}\) = \(rac{7}{10}\).

Description : In a class, there are x girls and y boys, a student is selected at random, then find the probability of selecting a boy. -Maths 9th

Last Answer : Number of boys = y Total students = (x + y) Thus,P(a boy)= y/(x+y)

Description : 750 families with 3 children were selected randomly and the following data recorded If a family member is chosen at random, compute the probability that it has : -Maths 9th

Last Answer : (i) P(no boy child) =100 / 750 = 2 / 15 (ii) P (no girl child) = 120 /750 =4 / 25

Description : In a class, there are x girls and y boys, a student is selected at random, then find the probability of selecting a boy. -Maths 9th

Last Answer : Number of boys = y Total students = (x + y) Thus,P(a boy)= y/(x+y)

Description : 750 families with 3 children were selected randomly and the following data recorded If a family member is chosen at random, compute the probability that it has : -Maths 9th

Last Answer : (i) P(no boy child) =100 / 750 = 2 / 15 (ii) P (no girl child) = 120 /750 =4 / 25

Description : What is the probability that a number selected at random from the set of numbers {1, 2, 3, …, 100} is a perfect cube? -Maths 9th

Last Answer : (a) \(rac{1}{25}\) Let us assume S as the sample space in all questions. S means the set denoting the total number of outcomes possible. Let S = {1, 2, 3, , 100} be the sample space. Then, n(S) = 100 Let A : ... ∴Required probability P(A) = \(rac{n(A)}{n(S)}\) = \(rac{4}{100}\) = \(rac{1}{25}\)

Description : A box contains 100 balls numbers from 1 to 100. If three balls are selected at random and with replacement from the box, what is the probability -Maths 9th

Last Answer : (d) \(rac{1}{4}\)The box contains 100 balls numbered from 1 to 100. Therefore, there are 50 even and 50 odd numbered balls. The sum of the three numbers drawn will be odd, if all three are odd or one is even and 2 are odd. ∴ Required probability = P(odd) × P(odd) × P(odd) + P(even) × P(odd) × P(odd)

Description : A computer program selects an integer in the set {k : 1 ≤ k ≤ 10,00,000} at random and prints out the result. This process is repeated 1 million times. What is the probability that the value k = 1 appears in the printout atleast once ? (A) 0.5 (B) 0.704 (C) 0.632121 (D) 0.68

Last Answer : (C) 0.632121

Description : The probability of India winning a test match against Westindies is 1/2 . -Maths 9th

Last Answer : (c) \(rac{1}{4}\) Let A = Event that India wins the match. Then, \(\bar{A}\) = Event that India loses the match.P(A) = \(rac{1}{2}\) and P(\(\bar{A}\)) = 1 - \(rac{1}{2}\) = \(rac{1}{2}\) (∵ P(A) + P(\(\bar{A}\ ... }\) x \(rac{1}{2}\) = \(rac{1}{8}\) + \(rac{1}{8}\) = \(rac{2}{8}\) = \(rac{1}{4}\).

Description : If three natural numbersfrom 1 to 100 are selected randomly, then the probability that all are divisible by both 2 and 3 is -Maths 9th

Last Answer : (c) \(rac{4}{1155}\)Let n(S) = Number of ways of selecting 3 numbers from 100 numbers = 100C3 Let E : Event of selecting three numbers divisible by both 2 and 3 from numbers 1 to 100 = Event of selecting three ... C_3}{^{100}C_3}\) = \(rac{16 imes15 imes14}{100 imes99 imes98}\) = \(rac{4}{1155}\).

Description : 80 bulbs are selected at random from a lot -Maths 9th

Last Answer : Number of bulbs having life less than 900 hours = 10 + 12 + 23 = 45 P (a bulb has life less than 900 hours) = 45/80 = 9/16

Description : In a group there are 3 women and 3 men. 4 people are selected at random from this group -Maths 9th

Last Answer : A : Selected 3 women and 1 man B : Selected 1 women and 3 men S : Selected 4 people from 6 people (3 + 3) Then n(A) = 3C3 3C1, n(B) = 3C1 3C3, n(S) = 6C4∴ Required probability = P(A) + P(B) = \(rac{ ... 3C_1}{^6C_4}\) + \(rac{^3C_1 imes^3C_3}{^6C_4}\)= \(rac{2 imes1 imes3}{15}\) = \(rac{2}{5}.\)

Description : A management institute has six senior professors and four junior professors. Three professors are selected at random -Maths 9th

Last Answer : (a) \(rac{5}{6}\)P(At least one junior professor is selected) = P(Selecting 1 Junior) P(Selecting 2 Seniors) + P(Selecting 2 Junior) P(Selecting 1 Senior) + P(Selecting all 3 Juniors)∴ Required probability = \(rac{^4C_1 imes^ ... }{30}\) = \(rac{15+9+1}{30}\) = \(rac{25}{30}\) = \(rac{5}{6}\).

Description : A point is selected at random inside an equilateral triangle. From this point a perpendicular is dropped to each side. -Maths 9th

Last Answer : answer:

Description : In a batch, 40% of the students offered Maths, 30% offered science and 15% offered both. If a student is selected at random, what is the probability that they has offered science or maths? A) 0.55 B) 0.65 C) 0.45 D) 0.75

Last Answer : Answer: A) P(M) = 0.40 P(S) =0.30 and P(M∩S) = 0.15 P(M∪S) = P(M) + P(S) - P(M∩S) = 0.55

Description : A box contains 15bolts of which 5 are defective. If 5 bolts are selected at random from the box, what is the probability that at least one of them is defective? a) 91/143 b) 101/143 c) 111/143 d) 121/143 e) 131/143

Last Answer : Probability that at least one is defective = 1 – probability that none is defective Probability that none is defective = 10C5 / 15C5 = 12/143 Required Probability = 1-12/143 = 131/143 Answer: e)

Description : Two coin are tossed 400 times and we get a. Two Heads : 112 times b. One Head : 160 times c. No Head : 128 times. When two coins are tossed at random, what is the probability of getting a. Two Heads b. One Head c. No Head -Maths 9th

Last Answer : Given, Total number of events = 400 (a) No. of times two heads occur = 112 Probability of getting two heads = 112/400 = 7/25 (b) No. of times one heads occur = 160 Probability of getting one heads = 160/400 = 2/5 (c) No. of times no heads occur = 128 Probability of getting no heads = 128/400 = 8/25

Description : Two coin are tossed 400 times and we get a. Two Heads : 112 times b. One Head : 160 times c. No Head : 128 times. When two coins are tossed at random, what is the probability of getting a. Two Heads b. One Head c. No Head -Maths 9th

Last Answer : Given, Total number of events = 400 (a) No. of times two heads occur = 112 Probability of getting two heads = 112/400 = 7/25 (b) No. of times one heads occur = 160 Probability of getting one heads = 160/400 = 2/5 (c) No. of times no heads occur = 128 Probability of getting no heads = 128/400 = 8/25

Description : An integer is chosen at random from the first two hundred positive integers. What is the probability that the integer chosen is divisible by 6 or 8 ? -Maths 9th

Last Answer : As there are 200 integers, total number of exhaustive, mutually exclusive and equally likely cases, i.e, n(S) = 200 Let A : Event of integer chosen from 1 to 200 being divisible by 6⇒ n(A) = 33 \(\bigg(rac{200}{6}=33rac{1}{3}\ ... (rac{25}{200}\) - \(rac{8}{200}\) = \(rac{50}{200}\) = \(rac{1}{4}\).

Description : Two cards are drawn at random from a well-shuffled pack of 52 cards. What is the probability that either both are black or both are kings ? -Maths 9th

Last Answer : (b) \(rac{55}{221}\)S : Drawing 2 cards out of 52 cards ⇒ n(S) = 52C2 = \(rac{|\underline{52}}{|\underline{52}|\underline2}\) = \(rac{52 imes51}{2}\) = 1326A : Event of drawing 2 black cards out of 26 black cards⇒ n ... ) + \(rac{6}{1326}\) - \(rac{1}{1326}\) = \(rac{330}{1326}\) = \(rac{55}{221}\).

Description : The probability that in the random arrangement of the letters of the word ‘UNIVERSITY’the two I‘s do not come together is -Maths 9th

Last Answer : (b) \(rac{4}{5}\)Let S be the sample space. Then, n(S) = Total number of waysin which the letters of the word UNIVERSITY' can be arranged = \(rac{10!}{2!}\) (∵ There are 2I s) ... ! imes36}{rac{10!}{2!}}\) = \(rac{ ot8! imes36 imes2!}{10 imes9 imes ot8!}\) = \(rac{4}{5}\).

Description : A bag contains 5 green and 7 red balls, out of which two balls are drawn at random. What is the probability that they are of the same colour ? -Maths 9th

Last Answer : (d) \(rac{31}{66}\)Total number of balls in the bag = 12 (5 Green + 7 Red) Let S be the sample space of drawing 2 balls out of 12 balls.Thenn(S) = 12C2 = \(rac{12 imes11}{2}\) = 66∴ Let A : Event of drawing two red balls⇒ ... \(rac{n(B)}{n(S)}\) = \(rac{21}{66}\) + \(rac{10}{66}\) = \(rac{31}{66}\).

Description : In an examination there are 3 multiple choice questions and each question has 4 choices. If a student randomly selects answer for all -Maths 9th

Last Answer : Probability of selecting a correct choice for a question = \(rac{1}{4}\)(∵ Out of 4 choices only one is correct)∴ Probability of answering all the three questions correctly = \(rac{1}{4}\)x \(rac{1}{4}\)x\ ... of not answering all the three questions correctly = 1 - \(rac{1}{64}\) = \(rac{63}{64}\).

Description : A coin is tossed 500 times and we get Heads : 285 and tails : 215 times. When a coin is tossed at random, what is the probability of getting a. head? b. tail? -Maths 9th

Last Answer : Given, Total number of events = 500 No. of times heads occur = 285 Probability of getting head when coin is tossed at random = 285/500 = 57/100 No. of times tails occur = 215 Probability of getting tails when coin is tossed at random = 215/500 = 43/100

Description : A coin is tossed 500 times and we get Heads : 285 and tails : 215 times. When a coin is tossed at random, what is the probability of getting a. head? b. tail? -Maths 9th

Last Answer : Given, Total number of events = 500 No. of times heads occur = 285 Probability of getting head when coin is tossed at random = 285/500 = 57/100 No. of times tails occur = 215 Probability of getting tails when coin is tossed at random = 215/500 = 43/100

Description : The letters of the word ‘SOCIETY’ are placed at random in a row. What is the probability that three vowels come together ? -Maths 9th

Last Answer : There are 7 letters in the word SOCIETY. ∴ Total number of ways of arranging all the 7 letters = n(S) = 7!. When the case of three vowels being together is taken, then the three vowels are considered as one unit, so the ... = 5! 3! ∴ Required probability = \(rac{5! imes3!}{7!}\) = \(rac{1}{7}\)

Description : A bag contains 7 red and 5 green balls. The probability of drawing all four balls asred balls, when four balls are drawn at random is -Maths 9th

Last Answer : (b) \(rac{7}{99}\)There are (7 + 5) = 12 balls in the bag. 4 balls can be drawn at random from 12 balls in 12C4 ways. ∴ n(S) = 12C4 = \(rac{|\underline{7}}{|\underline3|\underline4}\) = \(rac{7 imes6 imes5}{3 ... ) = 35∴ Required probability = \(rac{n(A)}{n(S)}\) = \(rac{35}{495}\) = \(rac{7}{99}\).

Description : A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability of getting a red card or a diamond or a jack ? -Maths 9th

Last Answer : (d) \(rac{7}{13}\)Here n(S) = 52 Let A, B, C be the events of getting a red card, a diamond and a jack respectively. ∵ There are 26 red cards, 13 diamonds and 4 jacks, n(A) = 26, n(B) = 13, n(C) = 4 ⇒ n(A ∩ B) = ... rac{1}{52}\)= \(rac{44}{52}\) + \(rac{16}{52}\) = \(rac{28}{52}\) = \(rac{7}{13}\) .

Description : A natural number is chosen at random from amongst the first 300. What is the probability that the number chosen is a multiple of 2 or 3 or 5 ? -Maths 9th

Last Answer : (b) \(rac{11}{15}\)n(S) = 300 Let A : Event of getting a number divisible by 2 B : Event of getting a number divisible by 3 C : Event of getting a number divisible by 5 ∴ A ∩ B : Event of getting a number divisible by ... \(rac{320}{300}\) - \(rac{100}{300}\) = \(rac{220}{300}\) = \(rac{11}{15}\).

Description : Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with these vertices is equilateral equals : -Maths 9th

Last Answer : (c) \(rac{1}{10}\)Let S be the sample space.Then n(S) = Number of triangles formed by selecting any three vertices of 6 vertices of a regular hexagon= 6C3 = \(rac{6 imes5 imes4}{3 imes2}\) = 20.Let A : Event that the ... Required probability = \(rac{n(A)}{n(S)}\) = \(rac{2}{20}\) = \(rac{1}{10}\).

Description : If an integer P is chosen at random in the interval 0 ≤ p ≤ 5, the probability that the roots of the equation x^2 + px -Maths 9th

Last Answer : answer:

Description : A basket contains 2 blue, 4 red, 3 green and 5 black balls. If 4 balls are picked at random, what is the probability that -Maths 9th

Last Answer : (d) None of theseThe month having 3 days less than 31 days has 28 days, i.e, it is the month of February. P(Choosing February) = \(rac{1}{12}\).

Description : If n integers taken at random are multiplied together, then the probability that the last digit of the product is 1, 3, 7 or 9 is -Maths 9th

Last Answer : (d) 226 × 52C26 | 104C26Since there are 52 distinct cards in a deck and each distinct card is 2 in number.∴2 decks will also contain only 52 distinct cards, two each.∴ Probability that the player gets all distinct cards = \(rac{^{52}C_{26} imes2^{26}}{^{104}C_{26}}\).

Description : A letter is taken out at random from ‘ASSISTANT’ and another is taken out from ‘STATISTICS’. The probability that they are same letters is -Maths 9th

Last Answer : (c) 0.8645Required probability = P(X not defective and Y not defective) = P(\(\bar{X}\)) x P(\(\bar{Y}\))= (1 – P(X)) (1 – P(Y))= \(\bigg(1-rac{9}{100}\bigg)\)\(\bigg(1-rac{5}{100}\bigg)\)= \(rac{91}{100}\) x \(rac{95}{100}\) = \(rac{8645}{10000}\) = 0.8645.

Description : What is the probability that a two digit number selected at random will be a multiple of '3' and not a multiple of '7'? e) 13/45 f) 14/45 g) 23/90 h) 19/45

Last Answer : Answer: a

Description : Form, a cosmetic shop containing perfumes and does, a pair is selected at random. The probability that the selected pair will consist of one perfume a

Last Answer : Form, a cosmetic shop containing perfumes and does, a pair is selected at random. The probability ... of perfumes and does the shop can contain ?

Description : A mathematics book contains 250 pages. A page is selected at random. What is the probability that the number on the page selected is a perfect square?

Last Answer : A mathematics book contains 250 pages. A page is selected at random. What is the probability that the number on the page ... `(3)/(50)` D. `(7)/(125)`

Description : A box contains 50 tickets. Each ticket is numbered from 1 to 50. One ticket is selected at random, find the probability that the number on the ticket

Last Answer : A box contains 50 tickets. Each ticket is numbered from 1 to 50. One ticket is selected at random ... number on the ticket is not a perfect square.

Description : A Class IX English book contains 200 pages. A page is selected at random. What is the probability that the number on the page is divisible by 10?

Last Answer : A Class IX English book contains 200 pages. A page is selected at random. What is the probability that the number on the page is divisible by 10?

Description : What is the probability that a leap year selected at random will have 33 Sunday?

Last Answer : Need answer

Description : Nine playing cards are numbered 2 to 10. A card is selected at random. What is the probability that the card will be an odd number? a. 1/9 b. 2/9 c. 4/9 d. 3/7

Last Answer : c. 4/9

Description : A number is selected at random from first 50 natural numbers. Find the probability that it is a multiple of 3 and 4. a. 3/25 b. 2/25 c. 1/25 d. 13/50

Last Answer : b. 2/25

Description : In a class there are 15 boys and 10 girls. Three students are selected at random. The difference between the probability that 2 boys and 1 girl are selected compared to 1 boy and 2 girls are selected is: a) 23/78 b) 19/88 c) 15/92 d) 4/23 e) 7/46

Last Answer : 2 boys, 1 gi(Prl = (15c2×10c1) / 25c3 = 1050/2300 1 boy, 2 girls = (15c1×10c2) / 25c3 = 675/2300 Difference = (1050 - 675)/2300 = 375/2300 = 15/92 Answer: c)

Description : In a hostel, 40% of the students play cricket, 20% play chess and 10% both. If a student is selected at random, then the probability that he plays cricket or chess is: a) 1/2 b) 3/5 c) 1/4 d) 4/7

Last Answer : Answer: A) Given that, 40% play cricket; that is, P(C) = 40/100=4/10 20% play chess; that is, P(c) = 20/100 =2/10 And, 10% play both cricket and chess; that is, P(C And c) = 10/100 = 1/10 Now, we have ... P(C) + P(c) - P(C And c) = 4/20+2/10-1/10 =5/10=1/2 Hence, the required probability 1/2

Description : In a batch, there are 22 boys and 18 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is: a) 3754/8854 b) 4158/9880 c) 8514/9880 d) 2078/4920

Last Answer : Answer: B) Let , S - sample space E - event of selecting 1 girl and 2 boys. Then, n(S) = Number ways of selecting 3 students out of 40 = 40C3 = 9880 n(E) = 18C1 *22C2 = 18*231  = 4158 P(E) = n(E)/n(s) = 4158/9880 

Description : A and B throw a coin alternately till one of them gets a ‘head’ and wins the game. Find their respective probabilities of winning . -Maths 9th

Last Answer : Let A : Event of A getting a head ⇒ \(\bar{A}\) : Event of A not getting a head ∴ P(A) = \(rac{1}{2}\) and P(\(\bar{A}\)) = 1 - \(rac{1}{2}\) = \(rac{1}{2}\)Similarly, B : Event of B ... exclusive events, as either of them will win, P(B winning the game first) = 1 - \(rac{2}{3}\) = \(rac{1}{3}\).

Description : A five digit number is formed by the digits 0, 1, 2, 3, 4 (without repetition). Find the probability that the number formed is divisible by 4 ? -Maths 9th

Last Answer : Without repetition, a five -digit number can be formed using the five digits in 5! ways (5 4 3 2 1) Out of these 5! numbers, 4! numbers will be starting with digit 0. (0 (fixed) 4 3 2 1) ∴ Total ... + 6 + 6 + 4 + 4 + 4 = 30∴ Required probability = \(rac{30}{96}\) = \(rac{5}{16}.\)

Description : A bag contains 30 tickets numbered from 1 to 30. Five tickets are drawn at random and arranged in ascending order -Maths 9th

Last Answer : Total number of ways in which 5 tickets can be drawn = n(S) = 30C5. The tickets are arranged in the form T1, T2, T3 (= 20), T4, T5 Where T1, T2 ∈{1, 2, 3, , 19} and T4, T5 ∈{21, 22, , 30 ... {10 imes9}{2}\) x \(rac{5 imes4 imes3 imes2 imes1}{30 imes29 imes28 imes27 imes26}\) = \(rac{285}{5278}.\)