Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side DC. -Maths 9th

1 Answer

Answer :

=3 x 3 x 5 x 2 cm2 Area of parallelogram ABCD = 2 x 90 = 180 cm2 …(ii) Let altitude of a parallelogram be h. Also, area of parallelogram ABCD =Base x Altitude ⇒  180 = DC x h [from Eq. (ii)] ⇒  180 = 12 x h ∴ h = 180/12= 15 cm Hence, the area of parallelogram is 180 cm2 and the length of altitude is 15 cm.

Related questions

Description : Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side DC. -Maths 9th

Last Answer : Weknowthatthediagonalofaparallelogram(∥gm)dividesitintotwocongruenttriangles.SoAreaof∥gmABCD=2 Areaof△BCD.AccordingtoHeron′sformulathearea(A)oftrianglewithsidesa,b&cisgivenasA=2[s(s−a)(s−b) ... 90=180Areaof∥gm=base heightHeightofaltitudefromvertexAonsideCDoftheof∥gm=baseCDareaof∥gmABCD =12180 =15cm

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. -Maths 9th

Last Answer : Let the parallelogram be ABCD, in which ∠ADC and ∠ABC are obtuse angles. Now, DE and DF are two altitudes of parallelogram and angle between them is 60°.

Description : The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. -Maths 9th

Last Answer : Let the parallelogram be ABCD, in which ∠ADC and ∠ABC are obtuse angles. Now, DE and DF are two altitudes of parallelogram and angle between them is 60°.

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : The base and the corresponding altitude of a parallelogram are 10 cm and 7 cm, respectively. Find its area. -Maths 9th

Last Answer : Area of parallelogram = Base × Corresponding altitude = 10 × 7 = 70 cm2.

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 6 and 3 units respectively, one vertex at the origin, the longer side lies on the y-axis and one of the vertices lies in the second quadrant. -Maths 9th

Last Answer : Solution :-

Description : If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram, so formed will be half of the area of the given quadrilateral (figure). -Maths 9th

Last Answer : According to question prove that the area of the parallelogram

Description : If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram, so formed will be half of the area of the given quadrilateral (figure). -Maths 9th

Last Answer : According to question prove that the area of the parallelogram

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : Diagonal AC of a parallelogram ABCD bisects ∠A (see figure). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus -Maths 9th

Last Answer : (i) Here, ABCD is a parallelogram and diagonal AC bisects ∠A. ∴ ∠DAC=∠BAC ---- ( 1 ) Now, AB∥DC and AC as traversal, ∴ ∠BAC=∠DCA [ Alternate angles ] --- ( 2 ) AD∥BC and AAC as traversal, ∴ ∠DAC= ... ---- ( 2 ) From ( 1 ) and ( 2 ), ⇒ AB=BC=CD=DA Hence, ABCD is a rhombus.

Description : In the figure, the area of parallelogram ABCD is -Maths 9th

Last Answer : (c) We know that, area of parallelogram is the product of its any side and the corresponding altitude (or height). Here, when AB is base, then height is DL. Area of parallelogram = AB x DL and when AD is ... = DC x DL and when BC is base, then height is not given. Hence, option (c) is correct.

Description : In figure, if parallelogram ABCD and rectangle ABEM are of equal area, then -Maths 9th

Last Answer : (c) In rectangle ABEM, AB = EM [sides of rectangle] and in parallelogram ABCD, CD = AB On adding, both equations, we get AB + CD = EM + AB (i) We know that, the perpendicular distance between two ... AB+BE + EM+ AM [∴ CD = AB = EM] Perimeter of parallelogram ABCD > perimeter of rectangle ABEM

Description : In the figure, the area of parallelogram ABCD is -Maths 9th

Last Answer : (c) We know that, area of parallelogram is the product of its any side and the corresponding altitude (or height). Here, when AB is base, then height is DL. Area of parallelogram = AB x DL and when AD is ... = DC x DL and when BC is base, then height is not given. Hence, option (c) is correct.

Description : In figure, if parallelogram ABCD and rectangle ABEM are of equal area, then -Maths 9th

Last Answer : (c) In rectangle ABEM, AB = EM [sides of rectangle] and in parallelogram ABCD, CD = AB On adding, both equations, we get AB + CD = EM + AB (i) We know that, the perpendicular distance between two ... AB+BE + EM+ AM [∴ CD = AB = EM] Perimeter of parallelogram ABCD > perimeter of rectangle ABEM

Description : PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram . -Maths 9th

Last Answer : Here, PQ = SR = 12cm Let PS = x and PS = QR ∴ x + 12 + x +12 = Perimeter 2x + 24 = 40 2x = 16 x = 8 Hence, length of each side of the parallelogram is 12cm , 8cm , 12cm and 8cm.

Description : PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram . -Maths 9th

Last Answer : Here, PQ = SR = 12cm Let PS = x and PS = QR ∴ x + 12 + x +12 = Perimeter 2x + 24 = 40 2x = 16 x = 8 Hence, length of each side of the parallelogram is 12cm , 8cm , 12cm and 8cm.

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In the given figure , two opposite angles of a parallelograms PQRS are (3x - 4)° and (56 - 3x)° . Find all the angles of given parallelogram . -Maths 9th

Last Answer : We know that opposite angles of a paralleloram are equal . ∴ ∠P = ∠R ⇒ 3x - 4 = 56 - 3x ⇒ 6x = 60 ⇒ x = 10 Thus, ∠P = ∠R = 3 10 - 4 = 26° Also, ∠P + ∠Q = 180° [ ... Hence, the four angles of the parallelogram PQRS are 26°, 154°,26° and 154°. We should care our earth to have good eco balance.

Description : In the figure, it is given that BDEF and FDCE are parallelogram. Can you say that BD = CD? Why or why not ? -Maths 9th

Last Answer : Yes, in the given figure, BDEF is a parallelogram.. ∴ BD || EF and BD = EF …(i) Also, FDCE is a parallelogram. ∴ CD||EF and CD = EF …(ii) From Eqs. (i) and (ii), BD = CD = EF

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In the given figure , two opposite angles of a parallelograms PQRS are (3x - 4)° and (56 - 3x)° . Find all the angles of given parallelogram . -Maths 9th

Last Answer : We know that opposite angles of a paralleloram are equal . ∴ ∠P = ∠R ⇒ 3x - 4 = 56 - 3x ⇒ 6x = 60 ⇒ x = 10 Thus, ∠P = ∠R = 3 10 - 4 = 26° Also, ∠P + ∠Q = 180° [ ... Hence, the four angles of the parallelogram PQRS are 26°, 154°,26° and 154°. We should care our earth to have good eco balance.

Description : In the figure, it is given that BDEF and FDCE are parallelogram. Can you say that BD = CD? Why or why not ? -Maths 9th

Last Answer : Yes, in the given figure, BDEF is a parallelogram.. ∴ BD || EF and BD = EF …(i) Also, FDCE is a parallelogram. ∴ CD||EF and CD = EF …(ii) From Eqs. (i) and (ii), BD = CD = EF

Description : Write the coordinates of the vertices of a rectangle whose lenght and breadth are 7 and 4 units respectively,one vertex atthe the origin,the longer side lies on the x-axis and one of the vertices lies in the third quadrant. -Maths 9th

Last Answer : Solution :-

Description : In a triangle, the ratio of the distance between a vertex and the orthocentre and the distance of the circumcentre from the side -Maths 9th

Last Answer : answer:

Description : Perpendiculars are drawn from the vertex of the obtuse angles of a rhombus to its sides. The length of each perpendicular is equal to a units. -Maths 9th

Last Answer : answer:

Description : If A (-2, 4), B (0, 0) and C (4, 2) are the vertices of triangle ABC, then find the length of the median through the vertex A. -Maths 9th

Last Answer : D=slid ht of BC D≅(20+4​,20+2​) =(2,1) ∴ Length of median = Light of AD =root(−2−2)2+(4−1)2​=root42+32​=5 hope it helps thank u

Description : In the given figure, ABC is an equilateral triangle of side length 30 cm. XY is parallel to BC, XP is parallel to AC and YQ is parallel to AB. -Maths 9th

Last Answer : answer:

Description : Prove that the area of a parallelogram is the product of its side and the corresponding height. -Maths 9th

Last Answer : We know that diagnol of a parallelogram bisect it in two triangles of equal area area of triangle =1÷2×b×h so. 1÷2×b×h+1÷2×b×h=b×h Hence,proved

Description : Prove that the area of a parallelogram is the product of its side and the corresponding height. -Maths 9th

Last Answer : We know that diagnol of a parallelogram bisect it in two triangles of equal area area of triangle =1÷2×b×h so. 1÷2×b×h+1÷2×b×h=b×h Hence,proved

Description : If a rectangle and a parallelogram are equal in area and have the same base and are situated on the same side, and the ratio of the perimeter -Maths 9th

Last Answer : answer:

Description : The area of parallelogram PQRS is 88 cm sq. A perpendicular from S is drawn to intersect PQ at M. If SM = 8 cm, then find the length of PQ. -Maths 9th

Last Answer : Given area of parallelogram = 88 cm² And SM = 8cm Area of a parallelogram = height × base (Height is the measurement of a perpendicular drawn from one side to other) Here, Area of PQRS = SM × PQ 88cm² = 8cm × PQ 11cm = PQ

Description : ABCD is a parallelogram AE pependicular to DC CF perpendixular to AD AB =16 m ,AE =8m ,CF =10m ,fimd AD -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : X, Y are the mid-points of opposite sides AB and DC of a parallelogram ABCD. AY and DX are joined intersecting in P. CX and BY are joined -Maths 9th

Last Answer : answer:

Description : In a parallelogram ABCD, AE is perpendicular to DC and CF is perpendicular to AD. If AB = 10 cm, AE = 6 cm and CF = 8 cm, then find AD. -Maths 9th

Last Answer : Given, Parallelogram ABCD pAE = 8cm AB = 16cm CF = 10cm In a parallelogram, we know that opposite sides are equal. Therefore, CD = AB = 16cm To find the value of AD, the base is multiplied with height. Area of parallelogram = b x h 16 x 8 = AD x 10 128 = 10AD AD = 12.8cm

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : Ankush prepare a poster in the form of parallelogram , as in figure. -Maths 9th

Last Answer : (i) Since sum of adjacent angles of parallelogram is 180° ∴ We have ∠A + ∠B = 180° ⇒ 5x + 7 + 3x - 3 = 180° ⇒ 8x + 4 = 180° ⇒ 8x = 176° ⇒ x = 176°/8 = 22° ∴ ∠A = (5x + 7 ... [opposite angles of a ||gm] and ∠D = ∠B = 63° (ii) Properties of parallelogram (iii) By saving electricity, saving energy.

Description : In the figure, PSDA is a parallelogram. Points Q and R are taken on PS such that PQ = QR= RS and PA || QB || RC. -Maths 9th

Last Answer : Given In a parallelogram PSDA, points 0 and R are on PS such that PQ = QR = RS and PA || QB || RC. To prove ar (PQE) = ar (CFD) Proof In parallelogram PABQ, and PA||QB [given] So, ... = ΔDCF [by ASA congruence rule] ∴ ar (ΔPQE) = ar (ΔCFD) [since,congruent figures have equal area] Hence proved.

Description : O is any point on the diagonal PR of a parallelogram PQRS (figure). -Maths 9th

Last Answer : According to question prove that ar(ΔPSO) = ar(ΔPQO).

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : Ankush prepare a poster in the form of parallelogram , as in figure. -Maths 9th

Last Answer : (i) Since sum of adjacent angles of parallelogram is 180° ∴ We have ∠A + ∠B = 180° ⇒ 5x + 7 + 3x - 3 = 180° ⇒ 8x + 4 = 180° ⇒ 8x = 176° ⇒ x = 176°/8 = 22° ∴ ∠A = (5x + 7 ... [opposite angles of a ||gm] and ∠D = ∠B = 63° (ii) Properties of parallelogram (iii) By saving electricity, saving energy.

Description : In the figure, PSDA is a parallelogram. Points Q and R are taken on PS such that PQ = QR= RS and PA || QB || RC. -Maths 9th

Last Answer : Given In a parallelogram PSDA, points 0 and R are on PS such that PQ = QR = RS and PA || QB || RC. To prove ar (PQE) = ar (CFD) Proof In parallelogram PABQ, and PA||QB [given] So, ... = ΔDCF [by ASA congruence rule] ∴ ar (ΔPQE) = ar (ΔCFD) [since,congruent figures have equal area] Hence proved.

Description : O is any point on the diagonal PR of a parallelogram PQRS (figure). -Maths 9th

Last Answer : According to question prove that ar(ΔPSO) = ar(ΔPQO).

Description : Prove that the figure formed by joining the mid-points of the adjacent sides of a quadrilateral is a parallelogram. -Maths 9th

Last Answer : Solution :-

Description : If the distance from the vertex to the centroid of an equilateral triangle is 6 cm, then what is the area of the triangle? -Maths 9th

Last Answer : (b) 27√3 cm2.Let G be the centroid of ΔPQR. Then, PG = 6 cm.Now, \(rac{PG}{GS}\) = \(rac{2}{1}\) ⇒ GS = 3 cm∴PS = PG + GS = 9 cm (i)∴ If a is the length of a side of ΔPQR, then ... = 6√3 cm∴ Area of equilateral ΔPQR = \(rac{\sqrt3}{4}\) (a)2= \(rac{\sqrt3}{4}\) x (6√3)2 cm2 = 27√3 cm2.

Description : The area of a triangle is 5. Two of its vertices are (2, 1) and (3, –2). The third vertex is (x, y) -Maths 9th

Last Answer : Let A(x1, y1) = (3, 4), B(x2, y2) ≡ (0, 5), C(x3, y3) ≡ (2, -1)and D(x4, y4) ≡ (3, -2) be the vertices of quadrilateral ABCD.Area of quad. ABCD = \(rac{1}{2}\) |{(x1 y2 - x2 y1) + (x2y3 - x3y2) + (x3y4 - x4y3) ... ) + (12 + 6)}|= \(rac{1}{2}\) |{15 - 11 + 0 + 18}| = \(rac{1}{2}\)x 22 = 11 sq. units.