If A (-2, 4), B (0, 0) and C (4, 2) are the vertices of triangle ABC, then find the length of the median through the vertex A. -Maths 9th

1 Answer

Answer :

 D=slid ht of BC D≅(20+4​,20+2​) =(2,1) ∴  Length of median = Light of AD =root(−2−2)2+(4−1)2​=root42+32​=5  hope it helps  thank u

Related questions

Description : The area of a triangle is 5. Two of its vertices are (2, 1) and (3, –2). The third vertex is (x, y) -Maths 9th

Last Answer : Let A(x1, y1) = (3, 4), B(x2, y2) ≡ (0, 5), C(x3, y3) ≡ (2, -1)and D(x4, y4) ≡ (3, -2) be the vertices of quadrilateral ABCD.Area of quad. ABCD = \(rac{1}{2}\) |{(x1 y2 - x2 y1) + (x2y3 - x3y2) + (x3y4 - x4y3) ... ) + (12 + 6)}|= \(rac{1}{2}\) |{15 - 11 + 0 + 18}| = \(rac{1}{2}\)x 22 = 11 sq. units.

Description : The two vertices of a triangle are (2, –1), (3, 2) and the third vertex lies on the line x + y = 5. The area of the triangle is 4 units. -Maths 9th

Last Answer : (c) (5, 0) or (1, 4) Let the third vertex of the triangle be P(a, b). Since it lies on the line x + y = 5, a + b = 5 ...(i) Also, given area of triangle formed by the points (2, -1), (3, 2) and (a, b) = 4 ... b) - (-3a + b) = 5 + 15⇒ 4a = 20 ⇒ a = 5 ⇒ b = 0. ∴ The points are (1, 4) and (5, 0).

Description : Let PS be the median of the triangle with vertices P(2, 2), Q(6, –1) and R(7, 3). -Maths 9th

Last Answer : (b) a = √2b Let D be the mid-point of BC. Then D ≡ \(\bigg(rac{a+0}{2},rac{0}{2}\bigg)\)i.e. \(\bigg(rac{a}{2},0\bigg)\)Let E be the mid-point of AC, thenE = \(\bigg(rac{a+0}{2},rac{0+b}{2}\bigg)\) = \(\bigg ... \(rac{b}{a}.\)∴ From (i), \(rac{-2b}{a}\) x \(rac{b}{a}\) = -1⇒ 2b2 = a2 ⇒ a = √2 .

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 6 and 3 units respectively, one vertex at the origin, the longer side lies on the y-axis and one of the vertices lies in the second quadrant. -Maths 9th

Last Answer : Solution :-

Description : The median BE and CF of a triangle ABC intersect at G. -Maths 9th

Last Answer : According to question the area of ΔGBC = area of the quadrilateral AFGE.

Description : The median BE and CF of a triangle ABC intersect at G. -Maths 9th

Last Answer : According to question the area of ΔGBC = area of the quadrilateral AFGE.

Description : Find the area of triangle ABC whose vertices are A (-5, 7), B (-4, -5) and C (4, 5). -Maths 9th

Last Answer : the answer is 56.55u because height is 8.7 base is 13 cm

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : Write the coordinates of the vertices of a rectangle whose lenght and breadth are 7 and 4 units respectively,one vertex atthe the origin,the longer side lies on the x-axis and one of the vertices lies in the third quadrant. -Maths 9th

Last Answer : Solution :-

Description : A (5,-1) , B (-3,-2) and C (-1,8) are the vertices of ∆ ABC . The median from A meets BC at D ,then the coordinates of the point D are: (a) (-4,6) (b) (2,7/2) (c) (1,-3/2) (d) (-2,3)

Last Answer : (d) (-2,3)

Description : The point A(0, 0), B(1, 7) and C(5, 1) are the vertices of a triangle. Find the length of the perpendicular from -Maths 9th

Last Answer : (b) 3x - y = 0 Given lines are 3x - y - 3 = 0 and 3x - y + 5 = 0. Line parallel to the given lines can be written as 3x - y + c = 0 ...(i) Let us taken a point, say ... 5c + 15 = - 3c + 15 ⇒ 8c = 0 ⇒ c = 0. Substituting c = 0 in (i), the required equation is 3x - y = 0.

Description : Let the vertex of an angle ABC be located outside a circle -Maths 9th

Last Answer : Given: AD = CE To prove: ∠ABC = 1/2(∠DOE - ∠AOC) In △AOD and △COE AD = CE (Given) AO = OC and DO = OE (Radii of same circle) ∴ △AOD ≅ △COE (By SSS congruence criterion) ⇒ ∠1 = ∠3, ∠2 = ∠4 (CPCT) ... = 1/2(4z + 4x - 360°) ....(vii) From (iv) and (vii), we have ∠BAC = 1/2(∠DOE - ∠AOC)

Description : Prove that the points (2, –2), (–2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the length of the hypotenuse -Maths 9th

Last Answer : Let the co-ordinates of any point on the x-axis be (x, 0). Then distance between (x, 0) and (– 4, 8) is 10 units.⇒ \(\sqrt{(x+4)^2+(0-8)^2}\) = 10 ⇒ x2 + 8x + 16 + 64 = 100 ⇒ x2 + 8x – 20 = 0 ⇒ (x + 10) (x – 2) = 0 ⇒ x = –10 or 2 ∴ The required points are (– 10, 0) and (2, 0).

Description : If (0, 0) and (2, 0) are the two vertices of a triangle whose centroid is (1, 1), then the area of the triangle is: -Maths 9th

Last Answer : (b) \(\bigg(rac{2\sqrt{13}+20\sqrt2}{\sqrt{13}+\sqrt{17}+5\sqrt2},rac{8\sqrt{13}-6\sqrt{17}}{\sqrt{13}+\sqrt{17}+5\sqrt2}\bigg)\)Let A(x1, y1), B(x2, y2), C(x3, y3) be the vertices of ΔABC the ... +6)^2}\) = \(\sqrt{4+196}\) = \(\sqrt{200}=10\sqrt{2}\)∴ Co-ordinates of incentre of Δ ABC are

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : NEED ANSWER

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If the distance from the vertex to the centroid of an equilateral triangle is 6 cm, then what is the area of the triangle? -Maths 9th

Last Answer : (b) 27√3 cm2.Let G be the centroid of ΔPQR. Then, PG = 6 cm.Now, \(rac{PG}{GS}\) = \(rac{2}{1}\) ⇒ GS = 3 cm∴PS = PG + GS = 9 cm (i)∴ If a is the length of a side of ΔPQR, then ... = 6√3 cm∴ Area of equilateral ΔPQR = \(rac{\sqrt3}{4}\) (a)2= \(rac{\sqrt3}{4}\) x (6√3)2 cm2 = 27√3 cm2.

Description : In the given figure, ABC is an equilateral triangle of side length 30 cm. XY is parallel to BC, XP is parallel to AC and YQ is parallel to AB. -Maths 9th

Last Answer : answer:

Description : Given triangle ABC with medians AE, BF, CD; FH parallel and equal in length to AE; BH and HE are drawn; -Maths 9th

Last Answer : answer:

Description : In triangle ABC, D and E are mid-points of the sides BC and AC respectively. Find the length of DE. Prove that DE = 1/2AB. -Maths 9th

Last Answer : First Find the points D and E by midpoint formula. (x₂+x₁/2 , y₂+y₁/2) For DE=1/2AB In ΔsCED and CAB ∠ECD=∠ACB and the ratio of the side containing the angle is same i.e, CD=1/2BC ⇒CD/BC=1/2 EC=1/2AC ⇒EC/AC=1/2 ∴,ΔCED~ΔCAB hence the ratio of their corresponding sides will be equal, DE=1/2AB

Description : Find the co-ordinates of the circumcentre of the triangle whose vertices are (3, 0), (–1, –6) and (4, –1). Also find its circum-radius. -Maths 9th

Last Answer : Let A ≡ (2, - 2), B ≡ (-2, 1), C ≡ (5, 2 ). Then,AB = \(\sqrt{(-2-2)^2+(1+2)^2}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5BC = \(\sqrt{(5+2)^2+(2-1)^2}\) = \(\sqrt{49+1}\) = \(\sqrt{50}\) = \( ... of ΔABC = \(rac{1}{2}\) x base x height = \(rac{1}{2}\) x AB x AC = \(rac{1}{2}\)x 5 x 5 = 12.5 sq. units.

Description : Find the co-ordinates of the in-centre of the triangle whose vertices are (–36, 7), (20, 7) and (0, –8). -Maths 9th

Last Answer : Let A(1, 2), B(0, -1) and C(2, -1) be the mid-points of the sides PQ, QR and RP of the triangle PQR. Let the co-ordinates of P, Q and R be (x1, y1), (x2, y2) and (x3 , y3) respectively. Then, by the mid- ... ordinates of centroid of ΔPQR = \(\bigg(rac{3+(-1)+1}{3},rac{2+2+(-4)}{3}\bigg)\) = (1, 0).

Description : Without using Pythagoras’ theorem, show that the points A (0, 4), B(1, 2) and C(3, 3) are the vertices of a right angle triangle. -Maths 9th

Last Answer : Slope (m) = \(rac{(y_2-y_1)}{(x_2-x_1)}\) = \(rac{6-2}{5-1}\) = \(rac{4}{4}\) = 1Also slope (m) = tan θ, where θ is the inclination of the line to the positive direction of the x-axis in the anticlockwise direction. tan θ = 1 ⇒ θ = tan –11 = 45º.

Description : What is the perimeter of the triangle with the vertices A(–4, 2), B(0, –1) and C(3, 3) ? -Maths 9th

Last Answer : The two given lines are ax + by + c1 = 0 and ax + by + c2 = 0. Any line parallel to these two lines and midway between them is ax + by + c = 0 ...(i) Putting x = 0, y = \(-rac{c}{b}\) is ... c1 = c - c2 ⇒ c = \(rac{c_1+c_2}{2}\)∴ Required equation is ax + by + \(rac{c_1+c_2}{2}\) = 0.

Description : The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if -Maths 9th

Last Answer : (c) \(rac{b+k}{f+h}\)Let the slope of the lin passing through the points (-k, h) and (b, - f) be m1. Then m1 = \(rac{-f-h}{b+k}\) = \(-\bigg(rac{f+h}{b+k}\bigg)\)\(\bigg[Slope = rac{y_2-y_1}{x_2-x_1}\bigg]\) ... \(-rac{1}{m_1}\)= \(rac{-1}{-\big(rac{f+h}{b+k}\big)}\) = \(\bigg(rac{b+k}{f+h}\bigg)\)

Description : The orthocentre of a triangle whose vertices are (0, 0), (3, 0) and (0, 4) is -Maths 9th

Last Answer : (c) 60ºSince p is the length of perpendicular from origin on the straight line ax + by - p = 0.p = \(rac{|a.0+b.0-p|}{\sqrt{a^2+b^2}}\)⇒ 1 = \(\sqrt{a^2+b^2}\) ⇒ 1 ... 60° + y sin 60° = p Hence required angle is 60°, which is the angle between the perpendicular and the positive direction of x-axis.

Description : a square is inscribed in an isosceles triangle so that the square and the triangle have one angle common. show that the vertex of the square opposite the vertex of the common angle bisect the hypotenuse. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In a triangle, the ratio of the distance between a vertex and the orthocentre and the distance of the circumcentre from the side -Maths 9th

Last Answer : answer:

Description : Prove that any straight line drawn from the vertex of a triangle to the base is bisected by the straight line which -Maths 9th

Last Answer : answer:

Description : If is both the altitude and median of triangle ABC then triangle ABC is?

Last Answer : It is isosceles.

Description : PQRS is a square. A is a point on PS ,B is a point on PQ,C is a point on QR. ABC is a triangle inside square PQRS. Angle abc = 90° . If AP=BQ=CR then prove that angle BAC =45° -Maths 9th

Last Answer : This is the sketch of the question but its hard to answer.

Description : PQRS is a square. A is a point on PS ,B is a point on PQ,C is a point on QR. ABC is a triangle inside square PQRS. Angle abc = 90° . If AP=BQ=CR then prove that angle BAC =45° -Maths 9th

Last Answer : This is the sketch of the question but its hard to answer.

Description : in triangle abc if bd =1/3 bc then prove that 9(ad -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : in triangle abc if bd =1/3 bc then prove that 9(ad -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : in triangle abc bd =1/3 bd then prove that 9(ad)^2=7(ab)^2 -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If in equilateral triangle ABC, AD is perpendicular on BC then Prove that 3ABsquar=4ADsquare -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If a, b, c are the sides of a non-equilateral triangle, then the expression (b + c – a) (c + a – b) (a + b – c) – abc is -Maths 9th

Last Answer : answer:

Description : In an equilateral triangle ABC, the side BC is trisected at D. Then AD^2 is equal to -Maths 9th

Last Answer : answer:

Description : Let ABC be a triangle of area 16 cm^2 . XY is drawn parallel to BC dividing AB in the ratio 3 : 5. If BY is joined, then the area of triangle BXY is -Maths 9th

Last Answer : answer:

Description : Let ABC be a right angled triangle with AC as its hypotenuse. Then, -Maths 9th

Last Answer : answer:

Description : The area of triangle ABC is 15 cm sq. If ΔABC and a parallelogram ABPD are on the same base and between the same parallel lines then what is the area of parallelogram ABPD. -Maths 9th

Last Answer : area of parallelogram=2× area of triangle ABC =2×15=30sq cm theorem on area

Description : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC (iii) CM = MA = ½ AB -Maths 9th

Last Answer : Solution: (i) In ΔACB, M is the midpoint of AB and MD || BC , D is the midpoint of AC (Converse of mid point theorem) (ii) ∠ACB = ∠ADM (Corresponding angles) also, ∠ACB = 90° , ∠ADM = 90° and MD ⊥ AC (iii ... SAS congruency] AM = CM [CPCT] also, AM = ½ AB (M is midpoint of AB) Hence, CM = MA = ½ AB

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point of hypotenuse AB and parallel to BC intersects AC at D. Show that -Maths 9th

Last Answer : Solution :-

Description : ABC is an acute angled triangle. CD is the altitude through C. If AB = 8 units, CD = 6 units, find the distance -Maths 9th

Last Answer : answer:

Description : The median of a triangle divides it into two -Maths 9th

Last Answer : (a) We know that, a median of a triangle is a line segment joining a vertex to the mid-point of the opposite side. Thus, a median of a triangle divides it into two triangles of equal area.

Description : The median of a triangle divides it into two -Maths 9th

Last Answer : (a) We know that, a median of a triangle is a line segment joining a vertex to the mid-point of the opposite side. Thus, a median of a triangle divides it into two triangles of equal area.

Description : Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side -Maths 9th

Last Answer : Solution :-

Description : Prove that median of a triangle divides it into two triangles of equal area. -Maths 9th

Last Answer : Solution :-