ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. -Maths 9th

1 Answer

Answer :

Given ABCD is a parallelogram. A circle whose centre O passes through A, B is so drawn that it intersect AD at P and BC at Q To prove Points P, Q, C and D are con-cyclic. Construction Join PQ Proof ∠1 = ∠A [exterior angle property of cyclic quadrilateral] But  ∠A = ∠C [opposite angles of a parallelogram] ∴ ∠1 = ∠C ,..(i) But ∠C+ ∠D = 180°  [sum of cointerior angles on same side is 180°]  ⇒ ∠1+ ∠D = 180° [from Eq. (i)] Thus, the quadrilateral QCDP is cyclic. So, the points P, Q, C and D are con-cyclic. Hence proved.

Related questions

Description : ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. -Maths 9th

Last Answer : Given ABCD is a parallelogram. A circle whose centre O passes through A, B is so drawn that it intersect AD at P and BC at Q To prove Points P, Q, C and D are con-cyclic. Construction Join PQ ... Thus, the quadrilateral QCDP is cyclic. So, the points P, Q, C and D are con-cyclic. Hence proved.

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : ABCD is a parallelogram. P is a point on AD such that AP = 1/3 AD and Q is a point on BC such that CQ = 1/3 BC. Prove that AQCP is a parallelogram. -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that -Maths 9th

Last Answer : Solution :-

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. -Maths 9th

Last Answer : According to question find the area of the parallelogram ABCD.

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. -Maths 9th

Last Answer : According to question find the area of the parallelogram ABCD.

Description : In Fig. 9.23, ABCD is a parallelogram in which BC is produced to E such A B that CE = BC. AE intersects CD at F. If area of △BDF = 3 cm2, find the area of parallelogram ABCD. -Maths 9th

Last Answer : Solution :-

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. To prove, F is the mid-point of BC. Proof, BD intersected EF at G. In ΔBAD, E is the ... point of BD and also GF || AB || DC. Thus, F is the mid point of BC (Converse of mid point theorem)

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : ABCD is a parallelogram.The circle through A,B and C intersect CD (produce if necessary) at E.Prove that AE = AD. -Maths 9th

Last Answer : Solution :- ∠ABC + ∠AEC = 1800 (Opposite angles of cyclic quadrilateral) .. . (i) ∠ADE + ∠ADC = 1800 (Linear pair) But ∠ADC = ∠ABC (Opposite angles of ||gm) ∴ ∠ADE + ∠ABC = 1800 .. (ii) ... ∠ABC + ∠AEC = ∠ADE + ∠ABC ⇒ ∠AEC = ∠ADE ⇒ AD = AE (sides opposite to equal angles)

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that arc PXA ≅ arc PYB. -Maths 9th

Last Answer : Solution :- Let AB be a chord of a circle having centre at O. Let PQ be the perpendicular bisector of the chord AB intersect it say at M. Perpendicular bisector of the chord passes through the centre of the circle,i. ... = PM (Common) ∴ △APM ≅ △BPM (SAS) PA = PB (CPCT) Hence, arc PXA ≅ arc PYB

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : ABCD is parallelogram . AB is produced to E so that BE = AB. Provethat ED bisects BC -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : In Fig. 8.37, ABCD is a parallelogram and P, Q are the points on the diagonal BD such that BQ = DP. Show what APCQ is a parallelogram. -Maths 9th

Last Answer : Solution :-

Description : The middle points of the parallel sides AB and CD of a parallelogram ABCD are P and Q respectively. If AQ and CP divide the diagonal BD -Maths 9th

Last Answer : answer:

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] -Maths 9th

Last Answer : ] Solution: To Construct: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) , BC = CE ⇒∠CBE = ∠CEB also, ∠A+∠CBE = ... BC (Given) , ΔABC ≅ ΔBAD [SAS congruency] (iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Description : ABCD is a parallelogram x and y are midpoints of BC and CD respectively.Prove that- Area of triangle axy =3/8 area of parallelogram ABCD -Maths 9th

Last Answer : This answer was deleted by our moderators...