When light passes from air into water, the frequency of the light remains  the same. What happens to the speed? And the wavelength of light as it  crosses the boundary in going from air into water?
Speed Wavelength
A. Increases Remains the same  
B. Remains the same Decreases  
C. Remains the same remains the same  
D. Decreases Increases  
E. Decreases Decreases

1 Answer

Answer :

E. Decreases Decreases

Related questions

Description : A source produces sound waves under water. Waves travel through water and then into air. Which of the following statements about the frequency (f) and the wavelength () is correct and sound passes from ... increases. (3)  remains unchanged but f decreases. (4)  remains unchanged but f increases.

Last Answer : 3)  remains unchanged but f decreases.

Description : .If we narrow the distance between two slits in Young’s experiment the fringes width __________. A. Increases B. Decreases C. Remains same D. becomes zero

Last Answer : B. Decreases

Description : How the intensity of secondary maxima varies in case of Fraunhofer diffraction pattern for single slit? A. Intensity of secondary maxima decreases on either sides B. Intensity of ... C. Intensity increases and decreases alternately D. Intensity of secondary maxima increases on either sides

Last Answer : A. Intensity of secondary maxima decreases on either sides

Description : The speed of any mechanical wave as it propagates through a medium is dependent mainly on the A. frequency of the wave source B. wavelength C. period of the wave D. type of medium through which the wave travels E. amplitude

Last Answer : D. type of medium through which the wave travels

Description : Coherent light of a single frequency passes through a double slit with a separation d, to produce a pattern on a screen as distance D from the slits. What would cause the separation between adjacent ... d between the slits C. increase the distance D. increase the frequency of the incident light

Last Answer : B. increase the separation d between the slits

Description : .A beam of light is incident on a large block of glass. The index of refraction of the glass is greater than one. Is the wavelength of the light in the glass? A. Longer than B. Shorter than C. The same as the wavelength of the light in the air? D. None of above

Last Answer : B. Shorter than

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of wavelength of the reflected wave in air is equal to (a) 0 (b) λ/2 (c) λ (d) 2λ

Last Answer : (b) λ/2

Description : Light has wavelength, frequency, and speed. Which, if any, of these quantities remains unchanged when light passes from a vacuum into a block of glass?

Last Answer : ANSWER: FREQUENCY

Description : In reference with antireflection coating which of the following statement is true? A. Thickness of the film should be changed for light of same wavelength but different intensity B. Thickness of ... D. Thickness of the film should be decreased for light of same wavelength but higher intensity

Last Answer : B. Thickness of the film need not be changed for light of same wavelength but different intensity

Description : Diffraction due to circular aperture If a light passes through a small pinhole, and incident on a screen. What will be observed on the screen? A.A sharp bright point of the width equal to ... A bright ring at the centre surrounded by alternate dark and bright rings D. A diffused bright point

Last Answer : C. A bright ring at the centre surrounded by alternate dark and bright rings

Description : In Newton's rings experiment, if monochromatic source of light is replaced by another monochromatic source of higher wavelength. What will be the effect on radius (or diameter)? (a) Radius (or ... be no effect (d) Radius (or diameter) will remain constant but there will be more brightness

Last Answer : (b) Radius (or diameter) will increase

Description : What is the nature of interference pattern at the contact edge of wedge shaped film (a) Always bright (b) Always dark (c) Bright or dark depending upon the thickness of other end (d) Bright or dark depending upon the wavelength of the light

Last Answer : (b) Always dark

Description : To observe interference in thin films with a light of wavelength λ, the thickness of the film (a) Should be much smaller than λ (b) Should be a few thousand times of λ (c) Should be of the order of λ (d) Should be of the order of nanometer

Last Answer : (c) Should be of the order of λ

Description : A film is said to be thin if its thickness is (a) Much smaller than wavelength of light (b) Comparable with one wavelength of light (c) Of the order of nanometer (10-9 m) (d) Of the order of Pico meter (10-12 m)

Last Answer : (b) Comparable with one wavelength of light

Description : The number of lines on plane gratings is 5000. If it is illuminated by a wavelength of light 6000 A0, how many orders will be visible? A. 3 B. 3.33 C. 4 D. 2.0

Last Answer : A. 3

Description : What is true for intensity of scattered light according to Rayleigh's law? A. The intensity for scattering for light of largest wavelength more B. The light of smallest wavelength will be scattered ... C. All the wavelengths are scattered equally D. Intensity of light is not affected by scattering

Last Answer : B. The light of smallest wavelength will be scattered more

Description : The phenomenon of Newton’s rings can be used to check the __________. A. Wavelength of monochromatic light B. phase coherence of two sources C. flatness of any glass surface D. velocity of light

Last Answer : A. Wavelength of monochromatic light

Description : In Newton's ring experiment, the diameter of the 15 th ring was found to be 0.590 and that of the 5 th ring was 0.336 cm. If the radius of Plano convex lens is 100 cm, compute the wavelength of light used. A. 5885 A 0 B. 5880 A o C. 5890 A o D.5850 A

Last Answer : B. 5880 A o

Description : In Michelson ‘s interferometer 100 fringes cross the field view when the movable mirror is displaced through 0.0248 mm. Calculate the wavelength of monochromatic light used A. 5896 A 0 B.5890 A 0 C.4000 A 0 D. 4890 A 0

Last Answer : B.5890

Description : What is the highest order spectrum which may be seen with monochromatic light of wavelength 5000 A0by means of diffraction grating with 5000 lines/cm? A. 2 B. 4 C. 8 D. 16

Last Answer : B. 4

Description : To find prominent diffraction , the size of diffraction object should be A. greater than wavelength of light used B. comparable to order of wavelength of light C. less than wavelength of light used D. none of these.

Last Answer : B. comparable to order of wavelength of light

Description : Find the maximum value of resolving power of a grating 3 cm wide having 5000 lines per cm, if the wavelength of light used is 5890 A0. A. 40000 B. 45000 C. 4500 D. 5000

Last Answer : a option

Description : A grating has 6000 lines per cm. How many orders of light of wavelength 4500 A 0 can be seen? A. 1 B. 2 C. 3 D. 4

Last Answer : C. 3

Description : A slit of width ‘a’ is illuminated by white light. For what value of ‘a’ will the first minimum for red light fall at an angle of 300 wavelength of red light is 6500 A0 A. 1.1 x 10 -3 cm B. 1.4 X 10 -4 cm C. 1.3 X 10 -4 cm D. 1.6 X 10 -4 cm

Last Answer : C. 1.3 X 10 -4 cm

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : as the order increases, the width of a dark band in diffraction Patterns __________. A. Increases B. Decreases C. Does not change D. becomes infinity

Last Answer : Increases

Description : When electromagnetic waves strike the boundary of denser medium they are __________. A. Reflected, in phase B. Reflected out of phase by 180° C. reflected, they are completely absorbed

Last Answer : B. Reflected out of phase by 180°

Description : The angle of incidence for a wave A. can be measured between the incident ray and the normal B. can be measured between the incident wave front and the boundary C. is equal to the angle of reflection D. all of the above

Last Answer : D. all of the above

Description : An index of refraction less than one for a medium would imply A. That the speed of light in the medium is the same as the speed of light in vacuum B. That the speed of light in the ... greater than the speed of light in vacuum C. Refraction is not possible D. Reflection is not possible

Last Answer : B. That the speed of light in the medium is greater than the speed of light in vacuum

Description : In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the distance they travel by a multiple of: A. a fourth of a wavelength B. a half a wavelength C. a wavelength D. three-fourths of a wavelength

Last Answer : C. a wavelength

Description : In plane transmission grating, the angle of diffraction for second order maxima for wavelength 5 x 10 -5 cm is 30 0. Calculate the number of lines in one centimeter of the grating surface. A. 1000 lines/cm B. 5000 lines/cm C. 500 lines/cm D. 10000 lines/cm

Last Answer : B. 5000 lines/cm

Description : A wavelength is commonly measured in which one of the following units? A. Radians B. Angstroms C. Electron volts D. Seconds

Last Answer : B. Angstroms

Description : The characteristic that distinguishes a laser beam from an ordinary light beam is: A. The greater frequency of the laser beam B. The coherence of the laser beam C. The color of the laser beam D. The greater polarization of the laser beam

Last Answer : B. The coherence of the laser beam

Description : On a rainy day, small oil films on water show brilliant colors'. This is due to A. dispersion B. interference C. diffraction D. Polarization 49.The critical angle for a beam of light ... A. absorbed B. totally reflected C. Partially reflected and partially transmitted D. Totally transmitted

Last Answer : C. Partially reflected and partially transmitted

Description : .As a wave travels down a spring, the amplitude slowly decreases. Why does this occur? A. The law of conservation of energy does not apply to waves. B. The energy is spread out along the entire ... due to friction as the particles in the spring rub against each other. E. all of the above

Last Answer : D. Some energy is lost due to friction as the particles in the spring rub against each other.

Description : When a light ray travelling in glass is incident on an air surface, A. it will refract away from the normal B. some of the light may be reflected C. all of the light may be reflected D. two of A, B, and C E. all of A, B, and C

Last Answer : E. all of A, B, and C

Description : The speed of light in material A is 1.25 times as large as it is in material B. What is the ratio of the refractive indices, µA /µB of these materials? A.1.50 B.1.00 C.0.800 D.1.25

Last Answer : D.1.25

Description : What is the speed of light in glycerin (n = 1.47) expressed in terms of the speed of light in a vacuum? A. 2.04c B. 1.47c C. 0.680c D. 1.00c

Last Answer : C. 0.680c

Description : The wave nature of light is demonstrated by which of the following? A. The photoelectric effect B. Color C. The speed of light D. Diffraction

Last Answer : D. Diffraction

Description : Interference of light is evidence that : A. The speed of light is very large B. light is a transverse wave C. light is electromagnetic in character D. Light is a wave phenomenon

Last Answer : D. Light is a wave phenomenon

Description : Light enters air from water. The angle of refraction will be A. Greater than the angle of incidence. B. Equal to the angle of incidence. C. Less than the angle of incidence. D. None of these

Last Answer : C. Less than the angle of incidence.

Description : .Light is A. an electromagnetic wave B. a form of energy visible to the human eye C. the same type of energy as an X ray D. the same type of energy as a radio wave E. all of the above

Last Answer : E. all of the above

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of phase of the reflected wave in air is equal to (a) 0 (b) π (c) 2π (d) π/2

Last Answer : (b) π

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of phase of the reflected wave in air is equal to A. 0 B. π C.2 π D.π /2

Last Answer : B. π

Description : Two sources of light are said to be coherent if __________. A. they produce waves of the same wave length B. they have the same amplitude of vibration C. they produce waves in the medium simultaneously D. they produce waves of the same amplitude

Last Answer : D. they produce waves of the same amplitude

Description : If the baffle spacing in a shell and tube heat exchanger increases, then the Reynolds number of the shell side fluid (A) Remains unchanged (B) Increases (C) Increases or decreases depending on number of shell passes (D) Decreases

Last Answer : (D) Decreases

Description : Air resistance ______ with an increase in the speed of the object moving through it. a) increases b)decreases c)remains same d)no change

Last Answer : a) increases

Description : Antireflection coating is helps in which case of the following? A. Minimizing the reflection of light from top surface B. To absorb and control the amount of light entering into the medium C. To allow maximum light to reflect from top surface D. To allow minimum light to enter into the medium

Last Answer : A. Minimizing the reflection of light from top surface