Interference of light is evidence that :  
A. The speed of light is very large  
B. light is a transverse wave
C. light is electromagnetic in character  
D. Light is a wave phenomenon

1 Answer

Answer :

D. Light is a wave phenomenon

Related questions

Description : Newton’s light illustrate the phenomenon of (a) Interference (b) Diffraction (c) Dispersion (d) Polarisation

Last Answer : (a) Interference

Description : __________ of the following phenomenon cannot be explained on the particle nature of light. A. Photo Electric Effect B. Compton’s Effect C. Pair Production D. Interference

Last Answer : A. Photo Electric Effect

Description : Which of the following does not support the wave nature of light A. Interference C. Polarisation B. Compton effect D. Diffraction

Last Answer : B. Compton effec

Description : Which of the following phenomenon produces colors in soap bubble? (a) Interference (b) Diffraction (c) Polarization (d) Dispersion

Last Answer : (a) Interference

Description : .Light is A. an electromagnetic wave B. a form of energy visible to the human eye C. the same type of energy as an X ray D. the same type of energy as a radio wave E. all of the above

Last Answer : E. all of the above

Description : Interference in thin film is mainly because of (a) Division amplitude (b) Division of wave fronts (c) Addition of amplitude (d) Addition of wave fronts

Last Answer : (a) Division amplitude

Description : Interference in thin film is mainly because of A. Division amplitude B. Division of wave fronts C. Addition of amplitude D. Addition of wave fronts

Last Answer : A. Division amplitude

Description : Which of the following phenomenon helps to conclude that light is a transverse wave? (1) interference (2) diffraction (3) polarization (4) refraction

Last Answer : (3) polarization Explanation: The phenomena of interference and diffraction of light were successful beyond doubt to prove that light is a form of wave. But they failed to decide whether light ... light is a transverse wave was established only after the discovery of the phenomenon of polarization.

Description : Which of the following phenomenon helps to conclude that light is a transverse wave? (1) interference (2) diffraction (3) polarisation (4) refraction

Last Answer : polarisation

Description : Newton's rings are formed because of interference between the light Reflected from (a) Upper surface of Plano-convex lens and lower surface of plane glass plate (b) Lower surface of Plano-convex ... c) Lower and upper surface of Plano-convex (d) Lower and upper surfaces of plane glass plate

Last Answer : (b) Lower surface of Plano-convex lens and upper surface of plane glass plate

Description : Interference pattern is observed in wedge-shaped film for monochromatic light. Now monochromatic light is replaced by white light. What will be the effect on interference pattern? (a) It will turn to dark (b) It will turn to bright (c) Bands will disappear (d) It will be a mixture of all colors

Last Answer : (d) It will be a mixture of all colors

Description : What is the nature of interference pattern at the contact edge of wedge shaped film (a) Always bright (b) Always dark (c) Bright or dark depending upon the thickness of other end (d) Bright or dark depending upon the wavelength of the light

Last Answer : (b) Always dark

Description : In interference experiment, monochromatic light is replaced by white light, we will see (a) Uniform illumination of screen (b) Uniform darkness on the screen (c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : The interference in thin films is because (a) The film reflects some light (b) The film is thin enough so that refracted ray is close to reflected ray (c) The reflected ray undergo path change of λ/2 (d) All of above

Last Answer : (d) All of above

Description : To observe interference in thin films with a light of wavelength λ, the thickness of the film (a) Should be much smaller than λ (b) Should be a few thousand times of λ (c) Should be of the order of λ (d) Should be of the order of nanometer

Last Answer : (c) Should be of the order of λ

Description : When Newton’s rings interference pattern is viewed from above by means of reflected light, the central spot is __________. A. Dark B. Multi colored C. Bright D. None of these

Last Answer : A. Dark

Description : The points of constructive interference of light are__________. A. Always bright B. may be bright or dark C. always dark D. neither bright nor dark

Last Answer : A. Always bright

Description : In Michelson interferometer semi silvered mirror is used To obtain __________. A. Thin film interference B. Phase coherence C. mono chromatic light D. colored fringe

Last Answer : B. Phase coherence

Description : The conditions for the production of constructive and destructive interference are reversed due to the fact that on striking the thin film -------. A. Two rays of splitted light undergo phase ... two rays of splitted light undergo phase change of 180° C. Light is diffracted, light is polarized

Last Answer : A. Two rays of splitted light undergo phase change of 180°

Description : On a rainy day, small oil films on water show brilliant colors'. This is due to A. dispersion B. interference C. diffraction D. Polarization 49.The critical angle for a beam of light ... A. absorbed B. totally reflected C. Partially reflected and partially transmitted D. Totally transmitted

Last Answer : C. Partially reflected and partially transmitted

Description : The wave nature of light is demonstrated by which of the following? A. The photoelectric effect B. Color C. The speed of light D. Diffraction

Last Answer : D. Diffraction

Description : The phenomenon of Newton’s rings can be used to check the __________. A. Wavelength of monochromatic light B. phase coherence of two sources C. flatness of any glass surface D. velocity of light

Last Answer : A. Wavelength of monochromatic light

Description : The speed of light in material A is 1.25 times as large as it is in material B. What is the ratio of the refractive indices, µA /µB of these materials? A.1.50 B.1.00 C.0.800 D.1.25

Last Answer : D.1.25

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : What is the nature of interference pattern for thin film of wedge shaped (a) Concave outside (b) Convex outside (b) Equally spaced (d) Concave inside

Last Answer : (b) Convex outside

Description : In wedge shaped film the interference pattern has nature (a) Parallel to the end where thickness is non-zero (b) Perpendicular to contact edge (c) Parallel to contact edge (d) Perpendicular to the end where thickness is non-zero

Last Answer : (c) Parallel to contact edge

Description : In interference experiment, by keeping all other parameters constant, if you see the thin film interference from different angles, you will observe (a)Uniform illumination of screen (b) Uniform ... c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : Why in Newton’s rings the center spot is always dark? A. The thickness of the film is zero at center B. The path difference between incident ray and reflected ray is ½wavelength C. The incident ray and reflected ray undergo destructive interference D. All of above

Last Answer : D. All of above

Description : What is the nature of interference pattern for thin film of wedge shaped A. Concave outside B. Convex outside C. Equally spaced D. Concave inside

Last Answer : B. Convex outside

Description : Diffraction is special type of __________. A. Reflection B. Refraction C. Interference D. Polarization

Last Answer : B. Refraction

Description : Optical fiber works on the A. principle of refraction B. total internal reflection C. scattering D. interference

Last Answer : B. total internal reflection

Description : Colors in thin films are because of A. Dispersion C. Interference B. Compton effect D. Diffraction

Last Answer : C. Interference

Description : hat is the name of the process whereby waves travel around corners and obstacles in their paths? A. Reflection B. Refraction C Interference D. Diffraction

Last Answer : D. Diffraction

Description : What is the phenomenon which established the transverse nature of light? (1) Reflection (2) Interference (3) Diffraction (4) Polarisation

Last Answer : (4) Polarisation Explanation: The phenomena which proves the transverse nature alight is polarization. Since the intensity of polarized light on passing through a tourmaline crystal changes, ... waves. Transverse waves are waves that are oscillating perpendicularly to the direction of propagation

Description : What is the phenomenon which established the transverse nature of light ? (1) Reflection (2) Interference (3) Diffraction (4) Polarisation

Last Answer : Polarisation

Description : The speed of any mechanical wave as it propagates through a medium is dependent mainly on the A. frequency of the wave source B. wavelength C. period of the wave D. type of medium through which the wave travels E. amplitude

Last Answer : D. type of medium through which the wave travels

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of wavelength of the reflected wave in air is equal to (a) 0 (b) λ/2 (c) λ (d) 2λ

Last Answer : (b) λ/2

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of phase of the reflected wave in air is equal to (a) 0 (b) π (c) 2π (d) π/2

Last Answer : (b) π

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of phase of the reflected wave in air is equal to A. 0 B. π C.2 π D.π /2

Last Answer : B. π

Description : Two sources of light are said to be coherent if __________. A. they produce waves of the same wave length B. they have the same amplitude of vibration C. they produce waves in the medium simultaneously D. they produce waves of the same amplitude

Last Answer : D. they produce waves of the same amplitude

Description : In Fraunhofer diffraction wave front used is __________. A. Spherical B. Circular C. Plane D. Conical 71.In diffraction pattern of monochromatic light the bright bands formed are __________. A. of uniform intensity B. of non-uniform intensity C. of uniform width D. is of different colors

Last Answer : A. of uniform intensity

Description : When electromagnetic waves strike the boundary of denser medium they are __________. A. Reflected, in phase B. Reflected out of phase by 180° C. reflected, they are completely absorbed

Last Answer : B. Reflected out of phase by 180°

Description : The region of the electromagnetic spectrum immediately above the frequencies to which the human eye is sensitive is called: A. I r B. ultra-violet C. r f D. gamma ray

Last Answer : B. ultra-violet

Description : The phenomenon of diffraction can be understood using A. Huygens principle B. Fraunhofer C. Uncertainty principle D. Fresnel

Last Answer : A. Huygens principle

Description : .A beam of light is incident on a large block of glass. The index of refraction of the glass is greater than one. Is the wavelength of the light in the glass? A. Longer than B. Shorter than C. The same as the wavelength of the light in the air? D. None of above

Last Answer : B. Shorter than

Description : What is caused by the transverse nature of electromagnetic waves? A. Polarization B. Interference C. Beamwidth D. Gain

Last Answer : A. Polarization

Description : When light passes from air into water, the frequency of the light remains the same. What happens to the speed? And the wavelength of light as it crosses the boundary in going from air into ... same Decreases C. Remains the same remains the same D. Decreases Increases E. Decreases Decreases

Last Answer : E. Decreases Decreases

Description : An index of refraction less than one for a medium would imply A. That the speed of light in the medium is the same as the speed of light in vacuum B. That the speed of light in the ... greater than the speed of light in vacuum C. Refraction is not possible D. Reflection is not possible

Last Answer : B. That the speed of light in the medium is greater than the speed of light in vacuum