Columns of given length, cross-section and material have different values of buckling loads  for
different end conditions. The strongest column is one whose
(a) One end is fixed and other end is hinged
(b) Both ends are hinged or pin jointed
(c) One end is fixed and the other end entirely free
(d) Both the ends are fixed

1 Answer

Answer :

(d) Both the ends are fixed

Related questions

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (A) One end is fixed and other end is hinged (B) Both ... (C) One end is fixed and the other end entirely free (D) Both the ends are fixed

Last Answer : (D) Both the ends are fixed

Description : A column with maximum equivalent length has (a) both ends hinged (b) both ends fixed (c) one end fixed and the other end hinged (d) one end fixed and the other end free

Last Answer : (d) one end fixed and the other end free

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose endsare hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2, the permissible maximumcrippling load will be (a) 1.288 tonnes (b) 12.88 (c) 128.8 tonnes (d) 288.0

Last Answer : (b) 12.88

Description : According to Euler’s column theory, the crippling load for a column of length (l) fixed at both ends is __________ the crippling load for a similar column hinged at both ends. (a) equal to (b) two times (c) four times (d) eight times

Last Answer : (c) four times

Description : A column of length (l) with both ends fixed may be considered as equivalent to a column of length __________ with both ends hinged. (a) l/8 (b) l/4 (c) l/2 (d) l

Last Answer : c) l/2

Description : A column of length 4m with both ends fixed may be considered as equivalent to a column of length ………….with both ends hinged. (a) 2 m (b) 1 m (c) 3 m (d) 6 m

Last Answer : For a long column subjected to 1 point axial compressive load, its buckling strength will be maximum when its

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose ends are hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2 , the permissible maximum crippling load will be (A) 1.288 tonnes (B) 12.88 (C) 128.8 tonnes (D) 288.0

Last Answer : (B) 12.88

Description : A long column with fixed ends can carry load as compared to both ends hinged (a) 4 times (b) 8 times (c) 16 times (d) None

Last Answer : (a) 4 times

Description : While designing the pile as a column, the end conditions are nearly (A) Both ends hinged (B) Both ends fixed (C) One end fixed and other end hinged (D) One end fixed and other end free

Last Answer : Answer: Option C

Description : A column has its equivalent length equal to its length in case of a.one end fixed, other free b.both ends hinged c.one end hinged, other free d.107 dynes e.both end fixed

Last Answer : b. both ends hinged

Description : The most critical consideration in the design of a rolled steel column carrying axial loads is the (a) Percentage elongation at yield and the net cross-sectional area (b) Critical bending ... at ultimate load (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Last Answer : (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Description : The ratio of crippling loads of a column having both the ends fixed to the column having both the  ends hinged, is  (A) 1  (B) 2  (C) 3  (D) 4 

Last Answer : (D) 4 

Description : The ratio of the effective length of a column and minimum radius of gyration of its cross sectionalarea, is known (a) Buckling factor (b) Slenderness ratio (c) Crippling factor (d) None of these

Last Answer : (b) Slenderness ratio

Description : .In a free moment diagram support assumption is a. Simply supported ends b.free free ends c. fixed ends d.hinged ends

Last Answer : a. Simply supported ends

Description : A cantilever is a beam whose (a) Both ends are supported either on rollers or hinges (b) One end is fixed and other end is free (c) Both ends are fixed (d) Whose both or one of the end has overhang

Last Answer : b) One end is fixed and other end is free

Description : The region of the cross-section of a column in which compressive load may be applied without producing any tensile stress, is known as the core of the cross-section. In circular columns the radius of the core, ... One-third of the radius (c) One-quarter of the radius (d) One-fifth of the radius

Last Answer : (c) One-quarter of the radius

Description : The equivalent length of a column fixed at both ends, is (a) 0.5 l (b) 0.7 l (c) l (d) 1.5 l

Last Answer : (a) 0.5 l

Description : Pick up the correct statement from the following:  (A) The structural member subjected to compression and whose dimensions are small as  compared to its length, is called a stmt  (B) The ... in lateral direction of a long column, is generally known as buckling  (D) All the above

Last Answer : (D) All the above

Description : For long columns, the value of buckling load is……………..crushing load. (a) Less than (b) More than (c) Equal to (d) None of these

Last Answer : (a) Less than

Description : P = /L² is the equation for Euler's crippling load if  (A) Both the ends are fixed  (B) Both the ends are hinged  (C) One end is fixed and other end is free  (D) One end is fixed and other end is hinged

Last Answer : (B) Both the ends are hinged

Description : The slenderness ratio of a vertical column of a square cross-section of 2.5 cm sides and 300 cm length, is (a) 240 (b) 416 (c) 360 (d) 400

Last Answer : (b) 416

Description : The slenderness ratio of a vertical column of a square cross-section of 2.5 cm sides and 300 cm length, is (a) 200 (b) 240 (c) 360 (d) 416

Last Answer : (d) 416

Description : The slenderness ratio is the ratio of (a) Length of column to least radius of gyration (b) Moment of inertia to area of cross-section (c) Area of cross-section to moment of inertia (d) Least radius of gyration to length of the column

Last Answer : (a) Length of column to least radius of gyration

Description : Elongation of a bar of uniform cross section of length ‘L’, due to its own weight ‘W’ is given by a. 2WL/E b. WL/E c. WL/2E d. WL/3E Where, E=Young’s modulus of elasticity of material

Last Answer : c. WL/2E

Description : With identical beam and column, buckling occurs as compared to bending under a (a) Lesser load (b) Larger load (c) Equal load (d) None

Last Answer : (a) Lesser load

Description : Pure Buckling occurs in a (a) Short column (b) Medium Column (c) Long column (d) None

Last Answer : (c) Long column

Description : Buckling of a column occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (a) Axial load

Description : A long column with fixed ends can carry load as compared to cantilever column (a) 4 times (b) 8 times (c) 16 times (d) None

Last Answer : (c) 16 times

Description : A cantilever of length 3 m carries two point loads of 2 KN at the free end and 4KN at a distance of 1m from the free end .What is the deflection at the free end? Take E= 2×105 N/mm2and I= 108 mm4. a.2.56 mm b.3.84 mm c.1.84 mm d.5.26mm

Last Answer : c.1.84 mm

Description : .Freely supported beams are assumed to be fixed beams if subjected to a. end loads which makes displacement zero b. end moments c. end couples which makes slope zero d. moments

Last Answer : c. end couples which makes slope zero

Description : Free length for helical compression springs having square ends is given as ________. a.pn + 2d b.pn + 3d c. 2(p + d) d.pn + 4d

Last Answer : b.pn + 3d

Description : The ratio of the effective length of a column and minimum radius of gyration of its cross-sectional area, is known (A) Buckling factor (B) Slenderness ratio (C) Crippling factor (D) None of these

Last Answer : (B) Slenderness ratio

Description : Nature of stresses produced in buckling and bending are (a) Same (b) Different (c) Only tensile (d) None

Last Answer : (a) Same

Description : The purpose of lateral ties in short R.C. columns is to (a) Increase the load carrying capacity of column (b) Facilitate compaction of concrete (c) Facilitate construction (d) Avoid buckling of longitudinal bars

Last Answer : (d) Avoid buckling of longitudinal bars

Description : A column is said to be a short column, when (a) its length is very small (b) its cross-sectional area is small (c) the ratio of its length to the least radhis of gyration is less than 80 (d) the ratio of its length to the least radius of gyration is more than 80

Last Answer : (c) the ratio of its length to the least radhis of gyration is less than 80

Description : If the length of a combined footing for two columns l metres apart is L and the projection on the left side of the exterior column is x, then the projection y on the right side of the exterior column, in order to have a uniformly distributed ... l - ) (C) y = L/2 - (l + ) (D) y = L/2 - (l - )

Last Answer : Answer: Option D

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : In a mid point loaded fixed beam,the normal loads downwards tend to bend the beam a. wL2/ 12 b.wL2/ 4 c. wL2/ 8 d.wL2/ 24

Last Answer : c. wL2/ 8

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : Springs with rectangular or square cross section used for a. higher stiffness b. larger volume c. larger length d. smaller length

Last Answer : b. larger volume

Description : The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied

Last Answer : (d) all of above conditions are satisfied

Description : Solid length for helical compression springs having square and ground ends is given as _________. a. (n + 2)d b. (n + 3)d c. (n + 1)d d. None of the above

Last Answer : a. (n + 2)d

Description : With a leaf spring type of suspension, interference between steering and suspension system can be (a) front end of the spring is pin joined and the rear end is shackled (b) front end of the spring is ... joined (c) both end of the spring are shackled (d) both end of the spring are pin joined

Last Answer : (b) front end of the spring is shackled and the rear end is pin joined