Which of the following are statically determinate beams?
(a) Only simply supported beams
(b) Cantilever, overhanging and simply supported
(c) Fixed beams
(d) Continuous beams

1 Answer

Answer :

(b) Cantilever, overhanging and simply supported

Related questions

Description : If continuous beam is overhanging then overhanging acts as a a.propped cantilever b.cantilever c.supported cantilever d.extended supported beam

Last Answer : b.cantilever

Description : The Point of contraflexure occurs in case of (a) Cantilever beams (b) Simply supported beams (c) Over hanging beams (d) All types of beams

Last Answer : c) Over hanging beams

Description : A continuous beam is a. statically determinate b. statically indeterminate c.dynamically determinate d. statically redundant

Last Answer : b. statically indeterminate

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : Beams of fixed types are statically indeterminant in which equations of equilibrium are a. incompatible b. insufficient c. incomplete d.complete

Last Answer : b. insufficient

Description : Muller Breslau's principle for obtaining influence lines is applicable to (i) Trusses (ii) Statically determinate beams and frames (iii) Statically indeterminate structures, the material of which is elastic and follows Hooke's law (iv ... B) (i), (ii) and (iv) (C) (i) and (ii) (D) Only (i)

Last Answer : (A) (i), (ii) and (iii)

Description : The Castigliano's second theorem can be used to compute deflections (A) In statically determinate structures only (B) For any type of structure (C) At the point under the load only (D) For beams and frames only

Last Answer : (B) For any type of structure

Description : .Freely supported beams are assumed to be fixed beams if subjected to a. end loads which makes displacement zero b. end moments c. end couples which makes slope zero d. moments

Last Answer : c. end couples which makes slope zero

Description : A cantilever is a beam whose (a) Both ends are supported either on rollers or hinges (b) One end is fixed and other end is free (c) Both ends are fixed (d) Whose both or one of the end has overhang

Last Answer : b) One end is fixed and other end is free

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : A continuous beam is simply supported on its one or both the end supports the fixing moment on simply supported beam end is a. zero b. infinite c. neglected in calculation d. multiplied by a cross over factor in calculation

Last Answer : a. zero

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : .In a free moment diagram support assumption is a. Simply supported ends b.free free ends c. fixed ends d.hinged ends

Last Answer : a. Simply supported ends

Description : If the ratio of the span to the overall depth does not exceed 10, the stiffness of the beam will ordinarily be satisfactory in case of a (A) Simply supported beam (B) Continuous beam (C) Cantilever beam (D) None of these

Last Answer : Answer: Option C

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : Write the values of stiffness factor for beams. i) Simply supported at both ends ii)/fixed at one end simply supported at other end 

Last Answer : i)Stiffness factor for a beam Simply supported at both the ends = 3EI /L  ii) Stiffness factor for a beam fixed at one end and simply supported at other end = 4EI/L

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : The point of contraflexure occurs in (A) Cantilever beams only (B) Continuous beams only (C) Over hanging beams only (D) All types of beams

Last Answer : (C) Over hanging beams only

Description : Castigliano's first theorem is applicable (A) For statically determinate structures only (B) When the system behaves elastically (C) Only when principle of superposition is valid (D) None of the above

Last Answer : (C) Only when principle of superposition is valid

Description : A two way slab (a) May be simply supported on the four edges, with comers not held down and carrying uniformly distributed load. (b) May be simply supported on the four edge , with corners held ... . (c) May have edges fixed or continuous and carrying uniformly distributed load. (d) All the above.

Last Answer : (d) All the above.

Description : Negative yield line form i. Near the supports in the case of slabs fixed or continuous at the edge. ii. At mid span in the case of slabs fixed. iii.At mid span for simply supported circular slab [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ A ] i

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : Which of the following statements is/are true for a simply supported beam? a. Deflection at supports in a simply supported beam is maximum. b.Deflection is maximum at a point where slope is zero . c. Slope is minimum at supports in a simply supported beam. d. All of the above

Last Answer : b.Deflection is maximum at a point where slope is zero .

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : At the supports of a simply supported beam, shear forces will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : At the supports of a simply supported beam, bending moment will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (c) Zero

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : Bending moment at supports in case of simply supported beam is always (a) Zero (b) Positive (c) Negative (d) Depends upon loading

Last Answer : (a) Zero

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : For a simply supported beam, loaded with point load, the B.M.D. will be (a) A triangle (b) A parabolic curve (c) A cubic curve (d) None of these

Last Answer : a) A triangle

Description : A long column with fixed ends can carry load as compared to cantilever column (a) 4 times (b) 8 times (c) 16 times (d) None

Last Answer : (c) 16 times

Description : Which of the following theorem can be used for deflection in fixed beams a. Mohr’s first theorem b. Mohr’s second theorem c. Mohr’s third theorem d.Mohr’s fourth theorem

Last Answer : b. Mohr’s second theorem

Description : Fixed beam is also called as a. Propped beams b. Pulled-up beam c.Encaster beam d. Stacked beams

Last Answer : c.Encaster beam

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm