For a fixed beam with midpoint load point moment for x<L/2 is
a. P/4(8x-L)
b. P/8(4x-L)
c. P/8(L-4x)
d. P/4(L-4x)

1 Answer

Answer :

b. P/8(4x-L)

Related questions

Description : .For a fixed beam with midpoint load point of contraflexure occurs at a. L/4 b. L/2 c. L/6 d. L/8

Last Answer : a. L/4

Description : For a fixed beam with midpoint load point, reaction force at support is a.P b.P/2 c.P/3 d.P/4

Last Answer : b.P/2

Description : For a fixed beam with midpoint load point, maximum deflection at the centre is a.PL3/ 192EI b.PL2/ 48EI c.PL4/ 192EI d.PL3/ 48EI

Last Answer : a.PL3/ 192EI

Description : For a fixed beam with UDL,maximum bending moment at midpoint is a. wL3/248 b. wL2/248 c. wL2/24 d. wL2/24

Last Answer : c. wL2/24

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : In a off centre point loaded fixed beam total moment is a. Wab / L b.Wab / 2L c. Wab / 3L

Last Answer : a. Wab / L

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : In a mid point loaded fixed beam,the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : In a mid point loaded fixed beam,the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : b.rectangle

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : For a fixed beam with UDL,point of contraflexure is a.0.211L or 0.789L b. 0.365 L or 0.635 L c. 0.177 L or 0.823 L d.0.477 L or 0.523 L

Last Answer : a.0.211L or 0.789L

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : For any part of a beam between two concentrated load, Bending moment diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In moment distribution method initially all the members of the beam as assumed to be a.free b.fixed c.partially free d.partially fixed

Last Answer : b.fixed

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : In an off centrepoint loaded fixed beam the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : d.trapezium

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : .For a fixed beam with UDL,the free moment diagram represent a a.rectangle b.parabola c.triangle d.cubic curve

Last Answer : b.parabola

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : When the bending moment is parabolic curve between two points, it indicates that there is (a) No loading between the two points (b) Point loads between the two points (c) U.D.L. between the two points (d) Uniformly varying load between the two points

Last Answer : (c) U.D.L. between the two points

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : In a mid point loaded fixed beam,the normal loads downwards tend to bend the beam a. wL2/ 12 b.wL2/ 4 c. wL2/ 8 d.wL2/ 24

Last Answer : c. wL2/ 8

Description : Deflection underthe load in a S.S beam with W not at the centre will be a.4Wa2b2/ 3EI l . b.2Wa2b2/3EIl. c.Wa2 b2/ 3EIL. d.None.

Last Answer : c.Wa2 b2/ 3EIL.

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : According to Euler’s column theory, the crippling load for a column of length (l) fixed at both ends is __________ the crippling load for a similar column hinged at both ends. (a) equal to (b) two times (c) four times (d) eight times

Last Answer : (c) four times

Description : In a mid point loaded fixed beam, the end number of moments created are a.2 b.3 c.4 d.1

Last Answer : a.2

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : Maximum bending moment in a S.S. beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : (c) wL2/8

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]

Description : Equivalent torque in a shaft subjected to axial load P, torque T and bending moment M is (a) Teq = (Pa2 + M2 + T2) (b) Teq = (Pa2 + M2 + T2)0.5 (c)Teq = ( M2 + T2)0.5 (d) None

Last Answer : c)Teq = ( M2 + T2)0.5

Description : 18.The total extension of a taper rod of length ‘L’ and end diameters ‘D1’ and ‘D2’, subjected to a load (P), is given of a. 4PL/ΠE. D1D2 b. 3PL/ΠE. D1D2 c. 2PL/ΠE. D1D2 d. PL/ΠE.D1D2 Where E=Young’s modulus of elasticity

Last Answer : a. 4PL/ΠE. D1D2

Description : Point of contra-flexure is also called (a) Point of maximum Shear force (b) Point of maximum Bending moment (c) Point of inflexion (d) Fixed end

Last Answer : (c) Point of inflexion

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre