A beam of T-section is subjected to a shear force of F. The maximum shear force will  occur at the
a. top of the section
b. bottom of the section
c. neutral axis of the section
d. junction of web and flange

1 Answer

Answer :

c. neutral axis of the section

Related questions

Description : Shear stress in a I-section beam is maximum art the (a) Outermost fiber (b) At the junction of web and flange (c) Central fiber (d) None

Last Answer : b) At the junction of web and flange

Description : What is the shear stress acting along the neutral axis of triangular beam section, with base 60 mm and height 150 mm, when shear force of 30 kN acts? a. 15.36 N/mm2 b. 10.6 N/mm2 c. 8.88 N/mm2 d. Insufficient data

Last Answer : c. 8.88 N/mm2

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : For any part of a beam subjected to uniformly distributed load, Shear force diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : The shear stress acting on the neutral axis of a beam is _____ a. maximum b. minimum c. zero d. none of the above

Last Answer : a. maximum

Description : A hollow prismatic beam of circular section is subjected to a torsional moment. The maximum shear stress occurs at (a) inner wall of cross section (b) middle of thickness (c) outer surface of shaft (d) none of these

Last Answer : (c) outer surface of shaft

Description : The neutral axis of a T-beam exists (A) Within the flange (B) At the bottom edge of the slab (C) Below the slab (D) All the above

Last Answer : Answer: Option D

Description : Maximum shear stress in a triangular section ABC of height H and base B occurs at _________ a. H b. H/2 c. H/3 d. neutral axis

Last Answer : b. H/2

Description : When a beam is subjected to a bending moment the strain in a layer is …………the distance from the neutral axis. (a) Independent of (b) Directly proportional to (c) Inversely proportional to (d) None of these

Last Answer : (b) Directly proportional to

Description : The neutral axis in a T-beam section falls (a) Within the flange (b) Outside the flange (c) Either (a) or (b) (d) All the above

Last Answer : (c) Either (a) or (b)

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : Neutral axis of a beam always coincides with a. Axis passing through bottom of beam b. Axis passing through height h/2 from bottom c. Axis passing through height h/3 from bottom d. Axis passing through centroid

Last Answer : d. Axis passing through centroid

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : What is the shear stress acting along the neutral axis, over a triangular section? a. 2.66 (S/bh) b. 1.5 (S/bh) c. 0.375 (S/bh) d. None of the above

Last Answer : a. 2.66 (S/bh)

Description : When a rectangular beam is loaded transversely, the maximum compressive stress develops on (A) Bottom fibre (B) Top fibre (C) Neutral axis (D) Every cross-section

Last Answer : (B) Top fibre

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : A cast iron T section beam is subjected to pure bending. For maximum compressive stress to be  three times the maximum tensile stress, centre of gravity of the section from flange side is  (A) h/4  (B) h/3  (C) h/2  (D) 2/3 h

Last Answer : (A) h/4 

Description : The maximum magnitude of shear stress due to shear force F on a rectangular section of area A at  the neutral axis, is  (A) F/A (B) F/2A (C) 3F/2A (D) 2F/3A

Last Answer : (C) 3F/2A

Description : 7-For any part of the beam, between two concentrated load Shear force diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : Na

Description : If is the shear force at a section of an I-joist, having web depth and moment of inertia about its neutral axis, the difference between the maximum and mean shear stresses in the web is, (A) Sd²/8I (B) Sd²/12I (C) Sd²/16I (D) Sd²/24I

Last Answer : (D) Sd²/24I

Description : The shear force on a simply supported beam is proportional to (A) Displacement of the neutral axis (B) Sum of the forces (C) Sum of the transverse forces (D) Algebraic sum of the transverse forces of the section

Last Answer : (D) Algebraic sum of the transverse forces of the section

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : The neutral axis of a beam cross-section must (A) Pass through the centroid of the section (B) Be equidistant from the top of bottom films (C) Be an axis of symmetry of the section (D) None of these

Last Answer : (A) Pass through the centroid of the section

Description : A T-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis (A) Remains within the flange (B) Remains below the slab (C) Coincides the geometrical centre of the beam (D) None of these

Last Answer : Answer: Option A

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : A square object of 4 mm is subjected to a force of 3000 N. What is the maximum allowable shear stress acting on it? a. 250.14 mm2 b. 281.25 mm2 c. 400.32 mm2 d. 500 mm2

Last Answer : b. 281.25 mm2

Description : A circular pipe is subjected to maximum shear force of 60 kN. What is the diameter of the pipe if maximum allowable shear stress is 5 Mpa? a. 27.311 mm b. 75.56 mm c. 142.72 mm d. 692.10 mm

Last Answer : c. 142.72 mm

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The average shear stress in a beam of circular section is _______ times the maximum shear stress. a. 0.75 b. 1.5 c. 4/3 d. equa

Last Answer : a. 0.75

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : A T-section beam having flange 180mm wide and 20 mm thick and web 150 mm long and 20 mm thick carries a udl of 80 kN/m over an effective span of 8 m. Calculate the maximum bending stress.

Last Answer : Solution :

Description : The maximum compressive stress at the top of a beam is 1600 kg/cm2 and the corresponding tensile stress at its bottom is 400 kg/cm2 . If the depth of the beam is 10 cm, the neutral axis from the top, is (A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm

Last Answer : (D) 8 cm

Description : The section of the beam having greater width at the top in comparison to the width below neutral axis is known as. (a) Critical section (b) T-section (c) L-section (d) None of these

Last Answer : (b) T-section

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : In case of a cantilever beam, shear force at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : When a shaft is subjected to a twisting moment, every cross-section of the shaft will be under (a) Tensile stress (b) Compressive stress (c) Shear stress (d) All of these

Last Answer : c) Shear stress

Description : When a section is subjected to two equal and opposite forces tangentially to the section, the stress produced is known as (a) Tensile stress (b) Lateral stress (c) Shear stress (d) No stress

Last Answer : (c) Shear stress

Description : In a simple bending theory, one of the assumption is that the plane sections before bending remain plane after bending. This assumption means that a. stress is uniform throughout the beam b. ... the distance from the neutral axis d. strain is proportional to the distance from the neutral axis

Last Answer : d. strain is proportional to the distance from the neutral axis

Description : A flitched beam has a. Common neutral axis & both materials bend independently b. Common neutral axis & both materials has common R (Radius of curvature) c. Two neutral axis & both materials has common R (Radius of curvature) d. Two neutral axis & both materials bend independently

Last Answer : b. Common neutral axis & both materials has common R (Radius of curvature)

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : The effective depth of a T-beam is the distance between the (a) Centre of the flange and the top of the tensile reinforcement (b) Top of the flange and the centre of the tensile ... centre of the tensile reinforcement (d) Centre of the flange and the bottom centre of the tensile reinforcement

Last Answer : (b) Top of the flange and the centre of the tensile reinforcement

Description : is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The maximum stress in the beam, subjected to a maximum bending moment , is (A) f = (P/A) + (Z/M) ... ) + (M/Z) (C) f = (P/A) + (M/Z) (D) f = (P/A) + (M/6Z)

Last Answer : Answer: Option C

Description : is the pre-stressed force applied to tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The minimum stress on the beam subjected to a maximum bending moment is (A) f = (P/A) - (Z/M) (B) f = (A/P) - (M/Z) (C) f = (P/A) - (M/Z) (D) f = (P/A) - (M/6Z)

Last Answer : Answer: Option C

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : Shear stress in the beam acting on the cross section is (a) Normal to the cross section (b) Tangential to the cross section (c) Neither normal nor tangential (d) None

Last Answer : b) Tangential to the cross section

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory