Which of the following act on shafts?
a) Torsional moment
b) Bending Moment
c) Both torsional and bending
d) None of the mentioned

1 Answer

Answer :

c) Both torsional and bending

Related questions

Description : Which of the following act on shafts? a) Torsional moment b) Bending Moment c) Both torsional and bending d) None of the mentioned

Last Answer : c) Both torsional and bending

Description : Which of the following act on shafts? a) Torsional moment b) Bending Moment c) Both torsional and bending d) None of the mentioned

Last Answer : c) Both torsional and bending

Description : Which of the following is incorrect? a. In torsion equation, we use mean torque b. In torsion equation, we use maximum torque c. Many shafts are designed under combined bending and torsion load d. Shafts are also designed for torsional rigidity

Last Answer : a. In torsion equation, we use mean torque

Description : Flexible shafts have ______ rigidity in bending moment. a) High b) Low c) Very high d) Extremely low

Last Answer : b) Low

Description : The product of the tangential force acting on the shaft and radius of shaft known as (a) Torsional rigidity (b) Flexural rigidity (c) Bending moment (d) Twisting moment

Last Answer : (d) Twisting moment

Description : A shaft is said to be in pure torsion if a. Turning moment is applied at one end and other end is free b. Turning force is applied at one end and other end is free c. Two opposite turning moments are applied to the shaft d. Combination of torsional load and bending load is applied to the shaft

Last Answer : c. Two opposite turning moments are applied to the shaft

Description : The shafts will have same strength on the basis of torsional rigidity, if (a) diameter and length of both shafts is same (b) material of both shafts is same (c) angle of twist for both shafts is same (d) all of above conditions are satisfied

Last Answer : (d) all of above conditions are satisfied

Description : For two shafts joined in parallel, the --------------- in each shaft is same. a. shear stress. b. Angle of twist c. torque d. torsional stress.

Last Answer : b. Angle of twist

Description : For two shafts joined in series, the --------------- in each shaft is same. a. shear stress. b. Angle of twist c. torque d. torsional stress.

Last Answer : c. torque

Description : The relation governing the torsional torque in circular shafts is a. T/r=τ/l=Gθ/J b. T/J=τ/r=Gθ/l c. T/J=τ/l=Gθ/r d. T/l=τ/r=Gθ/J

Last Answer : b. T/J=τ/r=Gθ/l

Description : Two shafts will have equal strength, if (a) diameter of both the shafts is same (b) angle of twist of both the shafts is same (c) material of both the shafts is same (d) twisting moment of both the shafts is same

Last Answer : d) twisting moment of both the shafts is same

Description : In shafts with keyways the allowable stresses are usually ------------ proportional to the twisting moment. a.25% b. 50% c. 75% d. 95%

Last Answer : c. 75%

Description : Calculate the shaft diameter on rigidity basis if torsional moment is 196000N-mm, length of shaft is 1000mm. Permissible angle of twist per meter is 0.5’ and take G=79300N/mm². a) None of the listed b) 41.2mm c) 35.8mm d) 38.8mm

Last Answer : b) 41.2mm

Description : When the shaft is subjected to pure torsional moment, the torsional stress is given by? a) None of the listed b) 32M/πdᵌ c) 16M/πdᵌ d) 8M/πdᵌ

Last Answer : c) 16M/πdᵌ

Description : A hollow prismatic beam of circular section is subjected to a torsional moment. The maximum shear stress occurs at (a) inner wall of cross section (b) middle of thickness (c) outer surface of shaft (d) none of these

Last Answer : (c) outer surface of shaft

Description : For a solid or a hollow shaft subject to a twisting moment T, the torsional shearing stress t at a distance r from the centre will be (a) t = Tr/J (b) t = Tr (c) t = TJ/r (d) none of these

Last Answer : (a) t = Tr/J

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : Maximum shear stress in a hollow shaft subjected to a torsional moment is at the a. Middle of thickness. b. At the inner surface of the shaft. c. At the outer surface of the shaft. d. At the middle surface of the shaft.

Last Answer : c. At the outer surface of the shaft.

Description : What is the maximum shear stress induced in a solid shaft of 50 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 200 kN.mm respectively? a. 9.11 N/mm2 b. 14.69 N/mm2 c. 16.22 N/mm2 d. 20.98 N/mm2

Last Answer : b. 14.69 N/mm2

Description : What is the maximum principle stress induced in a solid shaft of 40 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 150 kN.mm respectively? a. 21.69 N/mm2 b. 28.1 N/mm2 c. 50.57 N/mm2 d. 52.32 N/mm2

Last Answer : c. 50.57 N/mm2

Description : A member subjected to couple produces rotational motion about its longitudinal axis called as ________ a. torsion b. twisting moment c. both a. and b. d. bending moment

Last Answer : c. both a. and b.

Description : In axial thrust diagram, at which point bending moment is zero? (a) Point of contra-flexure (b) Point of inflection (c) Both a. and b. (d) None of the above

Last Answer : (c) Both a. and b.

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : When sinking is accounted in a continuous beam the bending moment is a. modified b.same c.zero d.infinite

Last Answer : a. modified

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : In a mid point loaded fixed beam,the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : In a mid point loaded fixed beam,the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : b.rectangle

Description : In an off centrepoint loaded fixed beam the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : d.trapezium

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : For a fixed beam with UDL,maximum bending moment at midpoint is a. wL3/248 b. wL2/248 c. wL2/24 d. wL2/24

Last Answer : c. wL2/24

Description : The expression EI d4y/dx4 at a section of a member represents a. Shearing force b. rate of loading c. bending moment d.slope.

Last Answer : b. rate of loading

Description : .The expression EI d3y/dx3 at a section of a member represents a.Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : a.Shearing force

Description : The expression EI d2y/dx2 at a section of a member represents a. Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : c.bending moment

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : Deflection due to shear force as compared to bending moment will be a.equal b.less c.More d.None.

Last Answer : b.less

Description : Which of the following loading is considered for the design of axles ? (a) Bending moment only (b) Twisting moment only (c) Combined bending moment and torsion (d) Combined action of bending moment, twisting moment and axial thrust

Last Answer : (a) Bending moment only

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]

Description : Equivalent torque in a shaft subjected to axial load P, torque T and bending moment M is (a) Teq = (Pa2 + M2 + T2) (b) Teq = (Pa2 + M2 + T2)0.5 (c)Teq = ( M2 + T2)0.5 (d) None

Last Answer : c)Teq = ( M2 + T2)0.5

Description : When the shaft is subjected to pure bending moment, the bending stress is given by? a) None of the listed b) 32M/πdᵌ c) 16M/πdᵌ d) 8M/πdᵌ

Last Answer : b) 32M/πdᵌ

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : A shaft a. Is always subjected to pure torsion b. Combination of M & T but no end thrust c. Combination of torque & end thrust but no bending moment d. May be subjected to a combination of M, T and end thrust

Last Answer : d. May be subjected to a combination of M, T and end thrust

Description : In combined bending and torsion equivalent bending moment is a. Me = (M^2 + T^2)^1/2 b. Me = ½(M^2 + T^2)^1/2 c. Me = M+(M^2 + T^2)^1/2 d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Last Answer : d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : When a beam is subjected to a bending moment the strain in a layer is …………the distance from the neutral axis. (a) Independent of (b) Directly proportional to (c) Inversely proportional to (d) None of these

Last Answer : (b) Directly proportional to