In a mid point loaded fixed beam,the normal loads downwards tend to bend the beam  
a. wL2/ 12
b.wL2/ 4
c. wL2/ 8
d.wL2/ 24

1 Answer

Answer :

c. wL2/ 8

Related questions

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : For a fixed beam with UDL,maximum bending moment at midpoint is a. wL3/248 b. wL2/248 c. wL2/24 d. wL2/24

Last Answer : c. wL2/24

Description : In a mid point loaded fixed beam, the end number of moments created are a.2 b.3 c.4 d.1

Last Answer : a.2

Description : In a mid point loaded fixed beam,the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : In a mid point loaded fixed beam,the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : b.rectangle

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : Maximum bending moment in a S.S. beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : (c) wL2/8

Description : In a off centre point loaded fixed beam total moment is a. Wab / L b.Wab / 2L c. Wab / 3L

Last Answer : a. Wab / L

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : Maximum slope in a S.S. beam with W at centre will be a.Wl2/ 16EI. b.Wl2/32EI. c.Wl2/48EI. d.None.

Last Answer : a.Wl2/ 16EI.

Description : In an off centrepoint loaded fixed beam the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : d.trapezium

Description : Deflection of an off centre loaded fixed beam is a.Wa3 b3/ 3L3EI b.Wa3b3/ 8L3EI c.Wa3b3/ 192L3EI d.Wa3b3/ 384L3EI

Last Answer : a.Wa3 b3/ 3L3EI

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : For a simply supported beam, loaded with point load, the B.M.D. will be (a) A triangle (b) A parabolic curve (c) A cubic curve (d) None of these

Last Answer : a) A triangle

Description : Corresponding to Fig. (3), the loading on the portion AD of the beam will be (a) Uniformly distributed load (b) Uniformly varying load (c) Point loads (d) Cannot be said

Last Answer : (a) Uniformly distributed load

Description : A flitched beam has a. Common neutral axis & both materials bend independently b. Common neutral axis & both materials has common R (Radius of curvature) c. Two neutral axis & both materials has common R (Radius of curvature) d. Two neutral axis & both materials bend independently

Last Answer : b. Common neutral axis & both materials has common R (Radius of curvature)

Description : For a fixed beam with midpoint load point moment for x

Last Answer : b. P/8(4x-L)

Description : .For a fixed beam with midpoint load point of contraflexure occurs at a. L/4 b. L/2 c. L/6 d. L/8

Last Answer : a. L/4

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (a) One end is fixed and other end is hinged (b) ... (c) One end is fixed and the other end entirely free (d) Both the ends are fixed

Last Answer : (d) Both the ends are fixed

Description : .Freely supported beams are assumed to be fixed beams if subjected to a. end loads which makes displacement zero b. end moments c. end couples which makes slope zero d. moments

Last Answer : c. end couples which makes slope zero

Description : For a fixed beam with UDL,point of contraflexure is a.0.211L or 0.789L b. 0.365 L or 0.635 L c. 0.177 L or 0.823 L d.0.477 L or 0.523 L

Last Answer : a.0.211L or 0.789L

Description : For a fixed beam with midpoint load point, reaction force at support is a.P b.P/2 c.P/3 d.P/4

Last Answer : b.P/2

Description : For a fixed beam with midpoint load point, maximum deflection at the centre is a.PL3/ 192EI b.PL2/ 48EI c.PL4/ 192EI d.PL3/ 48EI

Last Answer : a.PL3/ 192EI

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : If a continuous beam is fixed on the right then the imaginary span is taken a.before the right end b. after the right end c. before the left end d. after the left end

Last Answer : b. after the right end

Description : Identify the necessary condition for fixed beam a. bending to be as single continuous curve b.bending to be as double continuous curve c.bending to be as discontinuous curve d.bending to be as multiple continuous curve

Last Answer : a. bending to be as single continuous curve

Description : In moment distribution method initially all the members of the beam as assumed to be a.free b.fixed c.partially free d.partially fixed

Last Answer : b.fixed

Description : A beam is called continuous beamif it has is a. more than one support b. more than two support c.more than one fixed support d. more than two fixed support

Last Answer : b. more than two support

Description : In a fixed beam the total change of slope along the span is a. Zero b.infinite c. neglected d.assumed to be unit value

Last Answer : a. Zero

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : umber of unknowns in fixed beam is a.4 b.3 c.2 d.0

Last Answer : a.4

Description : Fixed beam is also called as a. Propped beams b. Pulled-up beam c.Encaster beam d. Stacked beams

Last Answer : c.Encaster beam

Description : For a fixed beam with UDL, maximum deflection is a.wL4/48EI b.wL4/192EI c. wL4/384EI d.wL3/192EI

Last Answer : c. wL4/384EI

Description : .For a fixed beam with UDL,the free moment diagram represent a a.rectangle b.parabola c.triangle d.cubic curve

Last Answer : b.parabola

Description : A beam is called fixed beam if end slopes remain a. horizontal b.vertical c.inclined d.parabolic

Last Answer : a. horizontal