In continuous over the mid span, the deflection is
a. concave up
b. concave down
c. convex up
d. convex down

1 Answer

Answer :

a. concave up

Related questions

Description : In continuous beam between intermediate supports the deflection is a. convex down b. convex up c. concave up d. concave down

Last Answer : b. convex up

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. at the left hand support. b.at the right support. c. at the centre. d.none.

Last Answer : c. at the centre.

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. 3wl4 /584EI. b. 5wl4/384EI. C. 7wl4/384EI. d. None.

Last Answer : b. 5wl4/384EI.

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : According to I.S code in actual design , maximum permissible deflection is limited to -----------. a.(span/200) b.(span/325) c.(span /525) d.none of the above.

Last Answer : b.(span/325)

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : If a continuous beam is fixed on the right then the imaginary span is taken a.before the right end b. after the right end c. before the left end d. after the left end

Last Answer : b. after the right end

Description : In continuous beam with couple , the couple will cause a. negative moment in one part and positive moment in other part of the span b. negative moment in both part of the span c. no moment d. positive moment in both part of the span

Last Answer : a. negative moment in one part and positive moment in other part of the span b. negative moment in both part of the span

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : According to IS: 456-2000, the span/overall depth ratio for a continuous two-way slab in order to control deflection is given by [ A ] 20 [ B ] 28 [ C ] 32 [ D ] 40

Last Answer : [ C ] 32

Description : The deflection of a uniform circular bar of diameter d and length , which extends by an  amount under a tensile pull , when it carries the same load at its mid-span, is  (A) el/2d (B) e²l/3d² (C) el²/3d² (D) e²l²/3d

Last Answer : (C) el²/3d

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : Negative yield line form i. Near the supports in the case of slabs fixed or continuous at the edge. ii. At mid span in the case of slabs fixed. iii.At mid span for simply supported circular slab [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ A ] i

Description : In moment distribution method the effect of applies moment on adjacent joints are a. neglected b. carried over c. multiplied by a factor before applying d. distributed over the span

Last Answer : b. carried over

Description : A cantilever of length 3 m carries a uniformly distributed load over the entire length.If the deflection at the free end is 40 mm,find the slope at the free end. a.0.0115 rad b.0.01777 rad c.0.001566 rad d.0.00144 rad

Last Answer : b.0.01777 rad

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : The bending moment diagram for a cantilever with U.D.L. over the whole span will be (a) Triangle (b) Rectangle (c) Parabola (d) Ellipse

Last Answer : (c) Parabola

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : A continuous beam is simply supported on its one or both the end supports the fixing moment on simply supported beam end is a. zero b. infinite c. neglected in calculation d. multiplied by a cross over factor in calculation

Last Answer : a. zero

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : The type of spring used to achieve any linear and non-linear load-deflection characteristics is (a)spiral spring (b) non-ferrous spring (c)Belleville spring (d) torsion spring

Last Answer : (c)Belleville spring

Description : The weight or pressure required to deflect a spring in mm is called the spring (a) Weight (b) deflection (c) rate (d) rebound

Last Answer : c) rate

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : When two Belleville springs are in parallel, half force is obtained for a given deflection. (a) Half force (b) Double force (c) Same force (d) Can’t be determined

Last Answer : (b) Double force

Description : When two Belleville sprigs are arranged in series, half deflection is obtained for same force. (a) One fourth deflection (b) Double deflection (c) Four time deflection (d) None of the listed

Last Answer : (b) Double deflection

Description : Belleville spring can only produce linear load deflection characteristics. (a) Only linear (b) Linear as well as non linear (c) Non-linear (d) None of the mentioned

Last Answer : (b) Linear as well as non linear

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : b) Spring stiffness

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Maximum deflection in a leaf spring is given by (a) 3WL3/4Enbt3 (b) 3WL3/8Enbt3 (c) 3WL3/16Enbt3 (d) None

Last Answer : (b) 3WL3/8Enbt3

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : Initial gap between two turns of a close coil helical tension spring should be a. 0.5 mm b. based on the maximum deflection c. 1 mm d. zero

Last Answer : d. zero

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : A spring is designed for (a) Higher strength (b) Higher deflection (c) Higher stiffness (d) None

Last Answer : (b) Higher deflection

Description : Find total number coils in a spring having square and ground ends. Deflection in the spring is 6mm when load of 1100N is applied. Modulus of rigidity is 81370N/mm². Wire diameter and pitch circle diameter are 10mm and 50mm respectively. a) 7 b) 6 c) 5 d) 4

Last Answer : a) 7

Description : The axial deflection of spring for the small angle of θ is given by? a) 328PDᵌN/Gd⁴ b) 8PDᵌN/Gd⁴ c) 16PDᵌN/Gd⁴ d) 8PD²N/Gdᵌ

Last Answer : b) 8PDᵌN/Gd⁴

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Deflection in a close coiled helical spring is (a) 16 WR3n/Gd4 (b) 32 WR3n/Gd4 (c) 64 WR3n/Gd4 (d) None

Last Answer : (c) 64 WR3n/Gd4