The axial deflection of spring for the small angle of θ is given by?
a) 328PDᵌN/Gd⁴
b) 8PDᵌN/Gd⁴
c) 16PDᵌN/Gd⁴
d) 8PD²N/Gdᵌ

1 Answer

Answer :

b) 8PDᵌN/Gd⁴

Related questions

Description : The angle of twist for the equivalent bar to a spring is given by? (Symbols have their usual meaning) a) 8PD²N/Gd⁴ b) 16PD²N/Gd⁴ c) 16PDN/Gdᵌ d) 8PDN/Gdᵌ

Last Answer : b) 16PD²N/Gd⁴

Description : The axial deflection of spring for the small angle of θ is given by? a) 328PDɜN/Gd4 b) 8PDɜN/Gd4 c) 16PDɜN/Gd4 d) 8PD2N/Gdɜ

Last Answer : b) 8PDɜN/Gd4

Description : While designing shaft on the basis of torsional rigidity, angle of twist is given by? a) 100Ml/Gd⁴ b) 584Ml/Gd⁴ c) 292 Ml/Gd⁴ d) 300 Ml/Gd⁴

Last Answer : b) 584Ml/Gd⁴

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Deflection in a spring should be (a) Large (b) Medium (c) Small (d) None

Last Answer : (a) Large

Description : Maximum deflection in a leaf spring is given by (a) 3WL3/4Enbt3 (b) 3WL3/8Enbt3 (c) 3WL3/16Enbt3 (d) None

Last Answer : (b) 3WL3/8Enbt3

Description : A open helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : d) None

Description : A closed helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A closed helical spring under axial load is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (a) Shear

Description : A close coiled spring under axial load produces (a) Bending stresses (b) Shear stresses (c) Tensile stresses (d) None

Last Answer : (b) Shear stresses

Description : When a close-coiled helical spring is subjected to an axial load, it is said to be under. (a) Bending (b) Shear (c) Torsion (d) Crushing

Last Answer : (c) Torsion

Description : Torsional rigidity of a shaft is given by a. Gl/θ b. Tθ c. Tl/θ d. T/l

Last Answer : c. Tl/θ

Description : The type of spring used to achieve any linear and non-linear load-deflection characteristics is (a)spiral spring (b) non-ferrous spring (c)Belleville spring (d) torsion spring

Last Answer : (c)Belleville spring

Description : The weight or pressure required to deflect a spring in mm is called the spring (a) Weight (b) deflection (c) rate (d) rebound

Last Answer : c) rate

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Belleville spring can only produce linear load deflection characteristics. (a) Only linear (b) Linear as well as non linear (c) Non-linear (d) None of the mentioned

Last Answer : (b) Linear as well as non linear

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : b) Spring stiffness

Description : Initial gap between two turns of a close coil helical tension spring should be a. 0.5 mm b. based on the maximum deflection c. 1 mm d. zero

Last Answer : d. zero

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : A spring is designed for (a) Higher strength (b) Higher deflection (c) Higher stiffness (d) None

Last Answer : (b) Higher deflection

Description : Find total number coils in a spring having square and ground ends. Deflection in the spring is 6mm when load of 1100N is applied. Modulus of rigidity is 81370N/mm². Wire diameter and pitch circle diameter are 10mm and 50mm respectively. a) 7 b) 6 c) 5 d) 4

Last Answer : a) 7

Description : Deflection in a close coiled helical spring is (a) 16 WR3n/Gd4 (b) 32 WR3n/Gd4 (c) 64 WR3n/Gd4 (d) None

Last Answer : (c) 64 WR3n/Gd4

Description : The close-coiled helical springs ‘A’ and ‘B’ are of same material, same coil diameter, same wire diameter and subjected to same load. If the number of turns of spring ‘A’ is half that of spring ‘B’, the ratio of deflection of spring ‘A’ to spring ‘B’ is (a)1/2 (b) 1 (c) 2 (d) 4

Last Answer : (a)1/2

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : (b) Spring stiffness

Description : Torsional rigidity is defined as a. T/θ b. Cθ c. CIp d. = θ

Last Answer : c. CIp

Description : The current I passing through the galvanometer coil is related to the angle of deflection θ as a) I ∝ θ b) I 1/∝ θ c) I ∝ θ 2 d) I 1/∝ θ 2

Last Answer : a) I ∝ θ

Description : Angle of helix in a close coiled spring is (a) < 100 (b) >100 (c) =100 (d) None

Last Answer : (a) < 100

Description : The stiffness of spring is, (A) Deflection per unit of axial force (B) Force per unit cross-sectional area of spring (C) Ratio of mean coil diameter to wire diameter (D) Force required to produce unit deflection

Last Answer : (D) Force required to produce unit deflection

Description : A closely coiled helical spring of radius R, contains n turns and is subjected to an axial load W. If  the radius of the coil wire is r and modulus of rigidity of the coil material is C, the deflection of the  coil is  (A) WR3n/Cr4 (B) 2WR3n/Cr4 (C) 3WR3n/Cr4 (D) 4WR3n/Cr

Last Answer : (D) 4WR3n/Cr

Description : When two Belleville springs are in parallel, half force is obtained for a given deflection. (a) Half force (b) Double force (c) Same force (d) Can’t be determined

Last Answer : (b) Double force

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : Wahl suggested the correction in the stress factor to account for a. the additional transverse shear stress b. stress concentration c. fatigue stress d. axial stress

Last Answer : b. stress concentration

Description : Wahl’s stress concentration factor is used in close coiled springs under axial load to account for (a) Shear effect (b) Bending effect (c) Compression effect (d) none

Last Answer : (b) Bending effect

Description : In which condition the axial distance between two adjacent coils is called as pitch? a. Compressed condition b. Uncompressed condition c. Both a. and b. d. None of the above

Last Answer : b. Uncompressed condition

Description : Buckling of a column occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (a) Axial load

Description : Bending of beam occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (b) Transverse load

Description : Which of the following loading is considered for the design of axles ? (a) Bending moment only (b) Twisting moment only (c) Combined bending moment and torsion (d) Combined action of bending moment, twisting moment and axial thrust

Last Answer : (a) Bending moment only

Description : A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 Mpa. It is further subjected to a torque of 10 kNm. The maximum principal stress experienced on the shaft is closest to (a) 41Mpa (b) 82 Mpa (c) 164 Mpa (d) 204 Mpa

Last Answer : (b) 82 Mpa

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]

Description : Equivalent torque in a shaft subjected to axial load P, torque T and bending moment M is (a) Teq = (Pa2 + M2 + T2) (b) Teq = (Pa2 + M2 + T2)0.5 (c)Teq = ( M2 + T2)0.5 (d) None

Last Answer : c)Teq = ( M2 + T2)0.5

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : In axial thrust diagram, at which point bending moment is zero? (a) Point of contra-flexure (b) Point of inflection (c) Both a. and b. (d) None of the above

Last Answer : (c) Both a. and b.

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : A rod, 120cm long and of diameter 3.0 cm is subjected to an axial pull of 18 kN. The stress in N/mm2 is. a. 22.57 b. 23.47 c. 24.57 d. 25.47

Last Answer : d. 25.47

Description : Strain energy in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Strain energy in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : The type of spring used to achieve greater load carrying capacity within given space is (a)spiral spring (b) springs in series (c)multi-leaf spring (d) concentric spring

Last Answer : (d) concentric spring