Nature of stresses produced in buckling and bending are
(a) Same
(b) Different
(c) Only tensile
(d) None

1 Answer

Answer :

(a) Same

Related questions

Description : Propagation of fatigue failure is always due to compressive stresses. (a) Due to bending (b) Due to tensile (c) Due to fatigue (d) None of the listed

Last Answer : (b) Due to tensile

Description : A close coiled spring under axial load produces (a) Bending stresses (b) Shear stresses (c) Tensile stresses (d) None

Last Answer : (b) Shear stresses

Description : With identical beam and column, buckling occurs as compared to bending under a (a) Lesser load (b) Larger load (c) Equal load (d) None

Last Answer : (a) Lesser load

Description : Tensile and compressive stresses in a beam of symmetrical section are (a) σt = σc (b) σt > σc (c) σt < σc (d) None

Last Answer : (a) σt = σc

Description : Tensile and compressive stresses in a beam of un-symmetrical section are (a) σt = σc (b) σt =0 (c) σc =0 (d) None

Last Answer : (d) None

Description : Tensile and compressive stresses in a beam of symmetrical section are (a) σt = σc (b) σt > σc (c) σt < σc (d) None

Last Answer : (a) σt = σc

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : Lame's theory is associated with a) thick cylindrical shells b) thin cylindrical shells c) direct and bending stresses d) none of these

Last Answer : a) thick cylindrical shells

Description : Variation of bending stresses in a beam have (a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None

Last Answer : (b) Linear variation

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (a) One end is fixed and other end is hinged (b) ... (c) One end is fixed and the other end entirely free (d) Both the ends are fixed

Last Answer : (d) Both the ends are fixed

Description : The ratio of the effective length of a column and minimum radius of gyration of its cross sectionalarea, is known (a) Buckling factor (b) Slenderness ratio (c) Crippling factor (d) None of these

Last Answer : (b) Slenderness ratio

Description : Pure Buckling uses the equation of (a) Rankin-Gordon (b) Euler (c) Stiffness (d) None

Last Answer : (b) Euler

Description : Pure Buckling occurs in a (a) Short column (b) Medium Column (c) Long column (d) None

Last Answer : (c) Long column

Description : Buckling of a column occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (a) Axial load

Description : For long columns, the value of buckling load is……………..crushing load. (a) Less than (b) More than (c) Equal to (d) None of these

Last Answer : (a) Less than

Description : The value of Poison’s ratio depends upon (a) Nature of load, tensile or compressive (b) Magnitude of load (c) Material of the test specimen (d) Dimensions of the test specimen

Last Answer : (c) Material of the test specimen

Description : When a section is subjected to two equal and opposite forces tangentially to the section, the stress produced is known as (a) Tensile stress (b) Lateral stress (c) Shear stress (d) No stress

Last Answer : (c) Shear stress

Description : The concavity produced on the beam section about the centre line when downward force acts on it is called as (a) Hogging or positive bending moment (b) Hogging or negative bending moment (c) Sagging or positive bending moment (d) Sagging or negative bending moment

Last Answer : (b) Hogging or negative bending moment

Description : Propagation of fatigue failure is always due to compressive stresses. a) Due to bending b) Due to tensile c) Due to fatigue d) None of the listed

Last Answer : b) Due to tensile

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Parallel fillet welds are under  Shear and bending stresses  Compressive and torsion shear stresses  Tensile and compressive stresses  None

Last Answer :  None

Description : During transverse vibrations, shaft is subjected to which type of stresses? A) Tensile stresses B) Torsional shear stress C) Bending stresses D) All of the above

Last Answer : C) Bending stresses

Description : During transverse vibrations, shaft is subjected to which type of stresses? a. Tensile stresses b. Torsional shear stress c. Bending stresses d. All of the above

Last Answer : c. Bending stresses

Description : The application of elastic theory to the beams is based on the assumption that (a) At any cross-section, plane sections before bending remain plane after bending (b) All tensile stresses are taken ... reinforcement is free from initial stresses when it is embedded in concrete. (d) All of the above

Last Answer : (d) All of the above

Description : What is the ratio of hoop stresses in a spherical vs cylindrical shell of same diameter, thickness and under same pressure? a. 4:1 b. 2:1 c. 1:2 d. 1:4

Last Answer : c. 1:2

Description : Keeping loading same but increasing the length, normal stresses in a long column will (a) Increase (b) Decrease (c) No change (d) None

Last Answer : (b) Decrease

Description : Keeping loading same but increasing the length, shear stresses in a beam will (a) Increase (b) Decrease (c) No change (d) None

Last Answer : (c) No change

Description : Keeping loading same but increasing the length, normal stresses in a beam will (a) Increase (b) Decrease (c) No change (d) None

Last Answer : (a) Increase

Description : Ratio of diameters of two shafts joined in series is 2. If the two shafts have the same material and the same length the ratio of their shear stresses is a. 2 b. 4 c. 8 d. 16

Last Answer : c. 8

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : The direct stress included in a long column is………….. as compared to bending stress. (a) More (b) Less (c) Same (d) Negligible

Last Answer : d) Negligible

Description : When sinking is accounted in a continuous beam the bending moment is a. modified b.same c.zero d.infinite

Last Answer : a. modified

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : In a simple bending theory, one of the assumption is that the material of the beam is isotropic. This assumption means that the a. normal stress remains constant in all directions b. ... c. elastic constants are same in all the directions d. elastic constants varies linearly in the material

Last Answer : c. elastic constants are same in all the directions

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. (a) Fatigue Failure (b) Fracture (c) None of the listed (d) Nipping

Last Answer : (a) Fatigue Failure

Description : Hoop shrinking in thick cylinders is done to achieve (a) Increased stresses (b) Decreased stresses (c ) Uniform stresses (d) None

Last Answer : Hoop shrinking technique is used to make the stresses on the cylinder walls evenly distributed around the circumference of the cylinder, which results in a uniform stress distribution. This is important for ... under load. It also makes sure that the cylinder can withstand the pressure inside it.

Description : The thick shell is made from laminations to get (a) Increased stresses (b) Decreased stresses (c) Uniform stresses (d) None

Last Answer : (c) Uniform stresses

Description : Which one is most important in a thin shell? a) d/t 10 c) Stresses are uniform d) None

Last Answer : c) Stresses are uniform

Description : Design of a thin shell under pressure is done on the basis of a. Radial stress b. Longitudinal stress c. Hoop stress d. All the three stresses

Last Answer : c. Hoop stress

Description : Stresses in a thin cylindrical shell under internal pressure is independent of a. Diameter b. Thickness c. Length d. Diameter and thickness

Last Answer : c. Length

Description : A vessel is said to be thin if a. Its wall has less thickness b. Stresses are uniform over the entire thickness c. Stresses vary at inner and at outer radius d. None of the above

Last Answer : b. Stresses are uniform over the entire thickness

Description : In shafts with keyways the allowable stresses are usually ------------ proportional to the twisting moment. a.25% b. 50% c. 75% d. 95%

Last Answer : c. 75%

Description : A power transmitting ductile material shaft under P, T and M will fail under (a) Tensile considerations only (b) Compressive considerations only (c) Shear considerations only (d) None

Last Answer : (c) Shear considerations only

Description : When a column is subjected to an eccentric load, the stress induced in the column will be (a) direct stress only (b) bending stress only (c) shear stress only (d) direct and bending stress both

Last Answer : (d) direct and bending stress both

Description : Which of the following loading is considered for the design of axles ? (a) Bending moment only (b) Twisting moment only (c) Combined bending moment and torsion (d) Combined action of bending moment, twisting moment and axial thrust

Last Answer : (a) Bending moment only

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : The most critical consideration in the design of a rolled steel column carrying axial loads is the (a) Percentage elongation at yield and the net cross-sectional area (b) Critical bending ... at ultimate load (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Last Answer : (d) Compressive strength based on slenderness ratio and gross cross-sectional area.