Is there a difference in MTD (Mean Temperature Difference) between “E” and “J” (Divided Flow)  type shell and tube heat exchangers?

1 Answer

Answer :

Divided flow (shell type J) does not have the same correction as the usual flow pattern (shell type E).  Thermal design program make this correction factor mistake. True, there is very little difference at  correction factors above 0.90. However, there is a difference at lower values. For example, Equal outlet  temperatures Shell type “E” correction Fn = 0.805 Shell type “J” correction Fn = 0.775 Cold outlet 5F  higher than hot outlet Shell type “E” correction Fn = 0.765 Shell type “J” correction Fn = 0.65 Contact us if you do not have MTD correction factor charts for divided flow. TEMA has one chart for a single shell  but it gives high values for the above examples and it is hard to read in this range. Source: Gulley  Computer Associates

Related questions

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both ... steam on shell side (D) Shell and tube heat exchanger with air on shell side and steam inside tubes

Last Answer : (B) Finned tube heat exchanger with air outside and steam inside

Description : Pick out the wrong statement. (A) In drying a solid containing moisture above the critical moisture content the number of degrees of freedom is 2 (B) Sherwood number in mass transfer corresponds to ... tube heat exchangers. At higher pressure, however, it is customary to put gas in the tube side

Last Answer : (C) Forced convection is relatively more effective in increasing the rate of mass transfer, if Schmidt number is larger

Description : What is the method of determining maximum differential pressure during hydro testing of shell and tube heat exchangers?

Last Answer : Mr. Richard Lee of Plumlee International Consulting usually heat exchangers have two sets of test pressures per side, one for strength tests, and the other for operating or leak tests. The ... . The acceptability of this lower pressure test will often depend upon the consequences of a leak.

Description : Why is a vacuum breaker used on shell and tube heat exchangers that are utilizing steam as the heating utility?

Last Answer : Vacuum breakers are often installed on the shell side (steam side) of shell and tube exchangers to allow air to enter the shell in case of vacuum conditions developing inside the shell. For an ... vacuum in the shell could allow condensate to build in the unit and water hammer may result.

Description : What is the use of shell and tube heat exchangers?

Last Answer : shell and tube heat exchangers are used mostly in the chemical processing industry for heating, cooling, condensing, and evaporating highly corrosive liquids and gases.AMETEK ... fluoropolymer heat exchangers are Hydrochloric, Nitric and Hydrofluoric Acids. Another chemical manufacturing indust

Description : What are some good strategies for curing tube vibration in shell and tube exchangers?

Last Answer : Most flow-induced vibration occurs with the tubes that pass through the baffle window of the inlet zone. The unsupported lengths in the end zones are normally longer than, those in the rest of the ... bundles, this is the best solution. Adding a distributor belt on the shell would be a very

Description : What is some good advice for specifying allowable pressure drops in shell and tube exchangers for heavy hydrocarbons?

Last Answer : Frequently process engineers specify 5 or 10 PSI for allowable pressure drop inside heat exchanger tubing. For heavy liquids that have fouling characteristics, this is usually not enough. There are ... the heat exchanger of approximately 40%. This savings offset the cost of the pumping power

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : Finned tube heat exchangers (A) Give larger area per tube (B) Use metal fins of low thermal conductivity (C) Facilitate very large temperature drop through tube wall (D) Are used for smaller heat load

Last Answer : (A) Give larger area per tube

Description : Pick out the wrong statement. (A) Economy of a multiple effect evaporator is not influenced by the boiling point elevation (B) Two identical cubes of iron and copper will have the same heat ... in the field of refrigeration (D) Finned tube heat exchangers are suitable for heating air by steam

Last Answer : (B) Two identical cubes of iron and copper will have the same heat content under the same conditions of temperature

Description : For the same heat load and mass flow rate in the tube side of a shell and tube heat exchanger, one may use multipass on the tube side, because it (A) Decreases the pressure drop (B) ... the outlet temperature of cooling medium (C) Increases the overall heat transfer coefficient (D) None of these

Last Answer : (C) Increases the overall heat transfer coefficient

Description : Multipass heat exchangers are used (A) Because of simplicity of fabrication (B) For low heat load (C) To obtain higher heat transfer co-efficient and shorter tube (D) To reduce the pressure drop

Last Answer : (C) To obtain higher heat transfer co-efficient and shorter tube

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : Vibrations in the tubes of a shell and tube heat exchanger is induced due to the (A) Flow of fluid on the tube and shell sides (B) Oscillations in the flow of shell/tube sides fluid (C) Vibrations ... piping and/or supports due to external reasons (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : A process stream of dilute aqueous solution flowing at the rate of10 Kg.s -1 is to be heated. Steam condensate at 95°C is available for heating purpose, also at a rate of 10 Kg.s -1 . A 1 ... side (C) Parallel flow with process stream on shell side (D) Parallel flow with process stream on tube side

Last Answer : (A) Counter flow with process stream on shell side

Description : Use of transverse baffles in a shell and tube heat exchanger is done to increase the (A) Rate of heat transfer (B) Flow velocity (C) Turbulence of shell side fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : LMTD for evaporators & condensers for a given terminal parameters & set of conditions for counter-flow is equal to that for parallel flow. In such heat exchangers, with one of the fluids condensing or evaporating, the surface ... Parallel (B) Mixed (C) Counter flow (D) Same in either 'a', b' or 'c'

Last Answer : (D) Same in either 'a', b' or 'c'

Description : In a shell and tube type heat exchanger, the floating tube bundle heat arrangement is used (A) In low range of temperature differences (B) In high range of temperature differences (C) Because of its low cost (D) To prevent corrosion of the tube bundles

Last Answer : (B) In high range of temperature differences

Description : Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2 .°C. Condensation of vapor is carried out inside the tube in a shell and tube heat ... drop through the exchanger is desired (D) Temperature of the incoming vapor is very high

Last Answer : (B) Supersaturated

Description : __________ heat exchanger is the most suitable, when the temperature of shell side fluid is much higher than that of tube side. (A) Single pass, fixed tube sheet (B) U-tube (C) Three pass, fixed tube sheet (D) None of these

Last Answer : (B) U-tube

Description : In case of a multipass shell and tube heat exchanger, the temperature drop in the fluid (A) Is inversely proportional to the resistance across which the drop occurs (B) And the wall are proportional to individual resistances (C) And the wall is not related (D) None of these

Last Answer : (B) And the wall are proportional to individual resistances

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : In a shell and tube heat exchanger, (A) The temperature drops in the two fluids and the wall are proportional to individual resistances (B) The temperature drop is inversely proportional to ... ) There is no relationship between temperature drop and resistance (D) The relationship is not generalised

Last Answer : (A) The temperature drops in the two fluids and the wall are proportional to individual resistances

Description : Pick out the wrong statement. (A) In process heat exchangers, saturated steam is preferred over the superheated steam (B) The maximum is the emissive power of a surface at a temperature T1 ... under natural convection conditions, the velocity profile in air, normal to the plate, exhibits a maximum

Last Answer : (B) The maximum is the emissive power of a surface at a temperature T1 occurs at a wavelength of λ1 . If the surface temperature is halved, the maximum in the emissive power would occur at a wavelength of 0.5 λ1

Description : what is the valve setting for MTD 26hp

Last Answer : Need Answer

Description : In case of a multipass shell and tube heat exchanger, providing a baffle on the shell side __________ the heat transfer rate. (A) Increases (B) Decreases (C) Does not affect (D) May increase or decrease, depends on the type of baffle

Last Answer : (A) Increases

Description : Which type of heat exchanger is preferred for heavy heat loads? (A) Double pipe (B) Plate fine (C) Series and parallel set of shell and tube (D) None of these

Last Answer : (C) Series and parallel set of shell and tube

Description : Air is best heated with steam in a heat exchanger of (A) Plate type (B) Double pipe type with fin on steam side (C) Double pipe type with fin on air side (D) Shell and tube type

Last Answer : (C) Double pipe type with fin on air side

Description : What type of heat exchangers are most commonly used for a large-scale plant-cooling loop using seawater as the utility?

Last Answer : Commonly known as a secondary cooling loop or SECOOL, a closed loop water system is circulated through a processing plant near a sea. Process heat is transferred into the closed loop water and ... debris to clear the strainer. This method has been used for many years with great success.

Description : Double pipe heat exchangers are used (A) When heat transfer area required is very high (B) When heat transfer area required is very low, i.e. (100-200 ft 2 ). (C) Because it occupies less floor area (D) Because it is less costly

Last Answer : (B) When heat transfer area required is very low, i.e. (100-200 ft 2 )

Description : Fouling factor' used in the design of a multipass shell and tube heat exchanger is a (A) Non-dimensional factor (B) Factor of safety

Last Answer : (B) Factor of safety

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : Pick out the wrong statement. (A) Heat transfer by radiation cannot occur across an absolute volume (B) In case of a shell and tube heat exchanger, the pressure drop through the shell is ... The amount of heat involved in the condensation or vaporisation of 1 kg of a fluid is the same

Last Answer : (A) Heat transfer by radiation cannot occur across an absolute volume

Description : If the baffle spacing in a shell and tube heat exchanger increases, then the Reynolds number of the shell side fluid (A) Remains unchanged (B) Increases (C) Increases or decreases depending on number of shell passes (D) Decreases

Last Answer : (D) Decreases

Description : In a shell and tube heat exchanger, the height of 25 percent cut baffles is equal to (where, D = inside diameter of shell). (A) 0.25 D (B) 0.50 D (C) 0.75 D

Last Answer : (C) 0.75 D

Description : In a multipass shell and tube heat exchanger, tube side return pressure loss is equal to __________ the velocity head. (A) Twice (B) Four times (C) Square root of (D) Square of

Last Answer : (B) Four times

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : For shell and tube heat exchanger, with increasing heat transfer area, the purchased cost per unit heat transfer area (A) Increases (B) Decreases (C) Remain constant (D) Passes through a maxima

Last Answer : (D) Passes through a maxima

Description : Pick out the wrong statement: (A) The capacity of an evaporator is reduced by the boiling point elevation (B) Corrosive liquid is normally passed through the tubes in a ... recompression evaporator (D) Heat sensitive materials should be concentrated in high pressure evaporators

Last Answer : (D) Heat sensitive materials should be concentrated in high pressure evaporators

Description : The main function of baffles provided in a shell and tube heat exchanger is to (A) Facilitate the cleaning of outer tube surface (B) Enhance turbulence (C) Hold the tubes in position (D) All 'a', 'b' & 'c'

Last Answer : (B) Enhance turbulence

Description : Pick out the wrong statement. (A) Orifice baffles are never used in a shell and tube heat exchanger (B) Pressure drop on the shell side of a heat exchanger depends upon tube pitch also

Last Answer : (A) Orifice baffles are never used in a shell and tube heat exchanger

Description : Shell side pressure drop in a shell and tube heat exchanger does not depend upon the (A) Baffle spacing & shell diameter (B) Tube diameter & pitch (C) Viscosity, density & mass velocity of shell side fluid (D) None of these

Last Answer : (D) None of these

Description : Which characteristic of a fluid is not important in deciding its route in a shell and tube heat exchanger? (A) Corrosiveness (B) Fouling characteristic (C) Viscosity (D) None of these

Last Answer : (D) None of these

Description : In case of a shell and tube heat exchanger, the minimum and maximum baffle spacing is respectively (where, D = inside diameter of the shell) (A) D/5 and D (B) D/2 and 2 D (C) D/4 and 2 D (D) D and 2 D

Last Answer : (A) D/5 and D

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : For large heat transfer area requirement, shell and tube heat exchanger is preferred, because it (A) Occupies smaller space (B) Is more economical (C) Is easy to operate and maintain (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)