Basic value .of Span to Depth ratio for cantilever to control deflection is
[ A ] 7
[ B ] 20
[ C ] 26
[ D ] 35

1 Answer

Answer :

[ A ] 7

Related questions

Description : Basic value of span to depth ratio for simply supported beam to control deflection is [ A ] 7 [ B ] 20 [ C ] 26 [ D ] 35

Last Answer : [ B ] 20

Description : The basic value of span to depth ratio for one way continuous slab is [ A ] 20 [ B ] 26 [ C ] 35 [ D ] 40

Last Answer : [ B ] 26

Description : For a cantilever of effective depth of 0.5 m, the maximum span to satisfy vertical deflection limit is (A) 3.5 m (B) 4 m (C) 4.5 m (D) 5 m

Last Answer : Answer: Option A

Description : According to IS: 456-2000, the span/overall depth ratio for a continuous two-way slab in order to control deflection is given by [ A ] 20 [ B ] 28 [ C ] 32 [ D ] 40

Last Answer : [ C ] 32

Description : The span/effective depth ratio is ----------------- for control of deflection [ A ] An exact method [ B ] An empirical method [ C ] An accurate method. [ D ] Both (a) and (c)

Last Answer : [ B ] An empirical method

Description : The principle used for control of deflection in beams and slabs. [ A ] Maxwell method [ B ] Mohr‟s theorem [ C ] Span to effective depth ratio [ D ] Span to overall depth ratio.

Last Answer : [ C ] Span to effective depth ratio

Description : The maximum ratio of span to depth of a cantilever slab, is (A) 8 (B) 10 (C) 12 (D) 16

Last Answer : Answer: Option C

Description : If the ratio of the span to the overall depth does not exceed 10, the stiffness of the beam will ordinarily be satisfactory in case of a (A) Simply supported beam (B) Continuous beam (C) Cantilever beam (D) None of these

Last Answer : Answer: Option C

Description : The maximum ratio of span to depth of a cantilever slab is (a) 8 (b) 10 (c) 12 (d) 14

Last Answer : (c) 12

Description : Find the correct statement from the followings. (a) For a cantilever slab, the ratio of span to overall depth should not 12. (b) One way slab which carry uniformly distributed load should be designed to ... be designed to resist a hogging moment at the face of the support. (d) All of the above.

Last Answer : (d) All of the above.

Description : The maximum ratio of span to depth of a slab simply supported and spanning in one direction, is (A) 35 (B) 25 (C) 30 (D) 20

Last Answer : Answer: Option C

Description : The maximum ratio of span to depth of a slab simply supported and spanning in one direction is (a) 35 (b) 25 (c) 30 (d) 20

Last Answer : (c) 30

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm

Description : A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free  end. If the modulus of elasticity of the material is 0.2 × 106  N/mm2 , the deflection of the free end,  is  (A) 2 mm  (B) 3 mm  (C) 4 mm  (D) 5 mm

Last Answer : (D) 5 mm

Description : The ratio of the deflections of the free end of a cantilever due to an isolated load at 1/3rd and  2/3rd of the span, is  (A) 1/7  (B) 2/7  (C) 3/7  (D) 2/5 

Last Answer : (B) 2/7 

Description : The maximum ratio of span to depth of a slab simply supported and spanning in two directions, is (A) 25 (B) 30 (C) 35 (D) 40

Last Answer : Answer: Option C

Description : The maximum ratio of span to depth of a slab simple supported and spanning in two directions, is (a) 25 (b) 30 (c) 35 (d) 40

Last Answer : (c) 35

Description : For a simply supported beam of span 15 m, the minimum effective depth to satisfy the vertical deflection limits should be (A) 600 mm (B) 750 mm (C) 900 mm (D) More than 1 m

Last Answer : Answer: Option B

Description : Basic values of span/effective depth ratios to be used for beams and slabs with spans [ A ] Less than 10m [ B ] Less than 20 m [ C ] 10 m- 20 m [ D ] More than 20 m

Last Answer : [ A ] Less than 10m

Description : The ratio of the maximum deflection of a cantilever beam with an isolated load at its free end and with a uniformly distributed load over its entire length, is (A) 1 (B) 24/15 (C) 3/8 (D) 8/3

Last Answer : (D) 8/3

Description : A cantilever beam rectangular in cross-section is subjected to an isolated load at its free end. If the  width of the beam is doubled, the deflection of the free end will be changed in the ratio of  (A) 8  (B) 1/8  (C) 1/2  (D) 3

Last Answer : (C) 1/2 

Description : For the design of a simply supported T-beam the ratio of the effective span to the overall depth of the beam is limited to (A) 10 (B) 15 (C) 20 (D) 25

Last Answer : Answer: Option C

Description : For normal cases, stiffness of a simply supported beam is satisfied if the ratio of its span to its overall depth does not exceed (A) 10 (B) 15 (C) 20 (D) 25

Last Answer : Answer: Option C

Description : For a continuous slab of 3 m x 35 m size, the minimum overall depth of slab to satisfy vertical deflection limits is (a) 120 mm (b) 100 mm (c) 75 mm (d) 50 mm

Last Answer : (a) 120 mm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : A singly reinforced concrete beam of 25 cm width and 70 cm effective depth is provided with 18.75 cm2 steel. If the modular ratio (m) is 15, the depth of the neutral axis, is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : A cantilever of length is subjected to a bending moment at its free end. If EI is the flexural  rigidity of the section, the deflection of the free end, is  (A) ML/EI (B) ML/2EI (C) ML²/2EI (D) ML²/3EI

Last Answer : (D) ML²/3EI

Description : If the length of a cantilever carrying an isolated load at its free end is doubled, the deflection of the free end will increase by (A) 8 (B) 1/8 (C) 1/3 (D) 2

Last Answer : (B) 1/8

Description : Maximum deflection of a cantilever due to pure bending moment M at its free end, is (A) ML²/3EI (B) ML²/4EI (C) ML²/6EI (D) ML²/2EI

Last Answer : (D) ML²/2EI

Description : The deflection due to couple M at the free end of a cantilever length L is  (A) ML/EI (B) 2ML/EI (C) ML²/2E (D) M²L/2EI

Last Answer : (C) ML²/2EI

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : Shear deflection of a cantilever of length L, cross sectional area A and shear modulus G, under a concentrated load W at its free end, is (A) (2/3) (WL/AG) (B) (1/3) (WL²/EIA) (C) (3/2) (WL/AG) (D) (3/2) (WL²/AG

Last Answer : (C) (3/2) (WL/AG

Description : Shear deflection of a cantilever of length L, cross sectional area A and shear modulus G, subjected to w/m u.d.l., is (A) (3/4) (L²w/GA) (B) (3/2) (L²w/GA) (C) (2/3) (L3w/GA) (D) (3/2) (Lw/GA²)

Last Answer : (A) (3/4) (L²w/GA)

Description : Design of R.C.C. cantilever beams, is based on the resultant force at (A) Fixed end (B) Free end (C) Mid span (D) Mid span and fixed support

Last Answer : Answer: Option A

Description : The ratio of the length and depth of a simply supported rectangular beam which experiences  maximum bending stress equal to tensile stress, due to same load at its mid span, is  (A) 1/2  (B) 2/3  (C) 1/4  (D) 1/3

Last Answer : (B) 2/3 

Description : If the width b and depth d of a beam simply supported with a central load are interchanged, the  deflection at the centre of the beam will be changed in the ratio of  (A) b/d (B) d/b (C) (d/b)2 (D) (b/d)

Last Answer : (D) (b/d)2

Description : A continuous beam shall be deemed to be a deep beam if the ratio of effective span to overall depth, is (A) 2.5 (B) 2.0 (C) Less than 2 (D) Less than 2.5

Last Answer : Answer: Option A

Description : A continuous beam is deemed to be a deep beam when the ratio of effective span to overall depth (1/D) is less than (A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0

Last Answer : Answer: Option C

Description : The span/over all depth ratio for a simply supported two-way slab according to IS : 456- 2000 is given by [ A ] 20 [ B ] 28 [ C ] 32 [ D ] 40

Last Answer : [ B ] 28

Description : An R.C.C. beam of 25 cm width and 50 cm effective depth has a clear span of 6 metres and carries a U.D.L. of 3000 kg/m inclusive of its self weight. If the lever arm constant for the section is 0.865, the maximum intensity ... , is (A) 8.3 kg/cm2 (B) 7.6 kg/cm2 (C) 21.5 kg/cm2 (D) 11.4 kg/cm2

Last Answer : Answer: Option A

Description : A reinforced concrete cantilever beam is 3.6 m long, 25 cm wide and has its lever arm 40 cm. It carries a load of 1200 kg at its free end and vertical stirrups can carry 1800 kg. Assuming concrete to carry one- ... beam, the number of shear stirrups required, is (A) 30 (B) 35 (C) 40 (D) 45

Last Answer : Answer: Option C

Description : A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so  that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the  value of E = 0.2 ... joist, is  (A) 200 mm  (B) 250 mm  (C) 300 mm  (D) 400 mm 

Last Answer : (D) 400 mm 

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : The deflection of a uniform circular bar of diameter d and length , which extends by an  amount under a tensile pull , when it carries the same load at its mid-span, is  (A) el/2d (B) e²l/3d² (C) el²/3d² (D) e²l²/3d

Last Answer : (C) el²/3d