The actual neutral axis of n under reinforced section is above the critical neutral axis of a balanced section
(a) Correct
(b) Incorrect
(c) Not known
(d) None of these

1 Answer

Answer :

(a) Correct

Related questions

Description : If the depth of actual neutral axis in a beam is more than the depth of critical neutral axis, then the beam is called (A) Balanced beam (B) Under-reinforced beam (C) Over-reinforced beam (D) None of the above

Last Answer : Option C

Description : The neutral axis of an over –reinforced section falls (a) On the critical neutral axis of balanced section. (b) Below the critical neutral axis of balanced section (c) Above the neutral axis o balanced section (d) Al l the above

Last Answer : (b) Below the critical neutral axis of balanced section

Description : If the permissible stress in steel in tension is 140 N/mm², then the depth of neutral axis for a singly reinforced rectangular balanced section will be (A) 0.35 d (B) 0.40 d (C) 0.45 d (D) Dependent on grade of concrete also

Last Answer : Answer: Option B

Description : If the depth of actual axis in a beam is more than the depth of critical axis, then the beam is called (a) Over reinforced beam (b) Under-reinforced beam (c) Balanced beam (d) Deep beam

Last Answer : (a) Over reinforced beam

Description : Regarding the working stress design of under reinforced concrete section, (a) The neutral axis depth will be greater than that of a balanced section. (b) The stress in steel intension will reach ... on the tension side is also be considered for calculating the moment of resistance of the section.

Last Answer : both b&c

Description : The depth of neutral axis for under reinforced section is --------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ C ] Less than

Description : If the depth of actual neutral axis of a doubly reinforced beam (A) Is greater than the depth of critical neutral axis, the concrete attains its maximum stress earlier (B) Is less ... critical neutral axis; the concrete and steel attain their maximum stresses simultaneously (D) All the above

Last Answer : Answer: Option D

Description : The depth of neutral axis for over reinforced section is ----------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ B ] Greater than

Description : The neutral axis of a balanced section is called (a) Balanced neutral axis (b) Critical neutral axis (c) Equivalent neutral axis (d) All of these

Last Answer : (b) Critical neutral axis

Description : The depth of neutral axis for a balanced section is --------- the depth of critical neutral axis [ A ] equal [ B ] always greater than [ C ] always less than [ D ] may be sometimes greater than

Last Answer : [ A ] equal

Description : The neutral axis corresponding to balanced section condition is termed as [ A ] Critical neutral axis [ B ] Centroidal neutral axis [ C ] Balanced neutral axis [ D ] All the above

Last Answer : [ A ] Critical neutral axis

Description : In a doubly-reinforced beam if and is the effective depth and is depth of critical neutral axis, the following relationship holds good (A) mc/t = n/(d - n) (B) (m + c)/t = n/(d + n) (C) (t + c)/n = (d + n)/n D) mc/t = (d - n)/t

Last Answer : Answer: Option A

Description : A singly reinforced beam has breadth b, effective depth d, depth of neutral axis n and critical neutral axis n1. If fc and ft are permissible compressive and tensile stresses, the moment to resistance of the beam, is (A) bn (fc ... (B) Atft (d - n/3) (C) ½ n1 (1 - n1/3) cbd² (D) All the above

Last Answer : Answer: Option D

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : In a singly reinforced beam, if the stress in concrete reaches its allowable limit later than the steel reaches, its permissible value, the beam section is said to be (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (b) Over-reinforced section

Description : The section in which concrete is not fully stressed to its permissible value when stress in steel reaches its maximum value is (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (a) Under-reinforced section

Description : In a singly reinforced beam, if the permissible stress in steel reaches earlier than that of concrete, the beam section as called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ A ] Under reinforced section

Description : In a Singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ B ] Over reinforced section

Description : With usual notations the depth of the neutral axis of a balanced section, is given by (A) mc/t = (d - n)/n (B) t/mc = (d - n)/n (C) t/mc = (d + n)/n (D) mc/t = n/(d - n)

Last Answer : Answer: Option D

Description : The section of a reinforced beam where most distant concrete fibre in compression and tension in steel attains permissible stresses simultaneously, is called (A) Balanced section B) Economic section (C) Critical section (D) All the above

Last Answer : Answer: Option D

Description : The section of a reinforced beam where most distant concrete fiber in compression and tension in steel attains permissible stresses simultaneously is called (i)Balanced section (ii)Economic section (iii)Critical section [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ D ] i, ii and iii

Description : For a reinforced concrete section, the shape of shear stress diagram is (A) Wholly parabolic (B) Wholly rectangular (C) Parabolic above neutral axis and rectangular below neutral axis (D) Rectangular above neutral axis and parabolic below neutral axis

Last Answer : Answer: Option C

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : The section of the beam having greater width at the top in comparison to the width below neutral axis is known as. (a) Critical section (b) T-section (c) L-section (d) None of these

Last Answer : (b) T-section

Description : If d and n are the effective depth and depth of the neutral axis respectively of a singly reinforced beam, the lever arm of the beam, is (A) d (B) n (C) d + n/3 (D) d - n/3

Last Answer : Answer: Option D

Description : If the depth of actual neutral axis is greater than the depth of critical neutral axis, then [ A ] Concrete attains its permissible stress earlier [ B ] Steel attains its permissible stress earlier [ C ] Both concrete and steel reaches its permissible stresses simultaneously [ D ] None of the above

Last Answer : [ A ] Concrete attains its permissible stress earlier

Description : It is preferable, that the design of slab should result in [ A ] A balanced section [ B ] An under reinforced section [ C ] Over reinforced section [ D ] None of the above.

Last Answer : [ B ] An under reinforced section

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : Consider the following statements: Percentage of steel for balanced designed of a singly reinforced rectangular section by limit state method depends on (1) Characteristic strength of concrete (2) Yield strength of concrete (3) Modulus of elasticity ... (b) 1, 3 and 4 (c) 1, 2 and 4 (d) 1, 2 and 3

Last Answer : 1,2,4

Description : Steel Beam theory is a method of designing [ A ] Balanced sections [ B ] Critical sections [ C ] Singly reinforced beams [ D ] Doubly reinforced beams

Last Answer : [ D ] Doubly reinforced beams

Description : In a singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called (A) Under-reinforced section (B) Over reinforced section (C) Economic section (D) Critical section

Last Answer : Answer: Option B

Description : Moment of resistance for a under reinforced section --------- that of a critical section [ A ] Is equal to [ B ] Is always greater than [ C ] Is less than [ D ] May be sometimes greater than

Last Answer : [ C ] Is less than

Description : For an over -reinforced (singly reinforced )rectangular reinforced concrete section (a) The lever arm will be less than that for a balanced section (b) The maximum stress developed by concrete will be equal ... c) The maximum stress developed by steel will be equal to the allowable (d) All the above

Last Answer : (b) The maximum stress developed by concrete will be equal to allowable stress in concrete

Description : In a singly reinforced beam, the effective depth is measured from its compression edge to (A) Tensile edge (B) Tensile reinforcement (C) Neutral axis of the beam (D) Longitudinal central axis

Last Answer : Answer: Option B

Description : A singly reinforced concrete beam of 25 cm width and 70 cm effective depth is provided with 18.75 cm2 steel. If the modular ratio (m) is 15, the depth of the neutral axis, is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : The stresses developed in concrete and steel in reinforced concrete beam 25 cm width and 70 cm effective depth, are 62.5 kg/cm2 and 250 kg/cm2 respectively. If m = 15, the depth of its neutral axis is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : The position of the neutral axis in reinforced brick masonry is independent of the loading and is at a depth of

Last Answer : (a) One-third of the effective depth

Description : In a reinforced concrete beam , the shear stress distribution above the neutral axis following a (a) A straight line (b) Circular curve (c) Parabolic curve (d) All the above

Last Answer : (c) Parabolic curve

Description : A reinforced concrete beam will crack if tensile stress set up in the concrete below the neutral axis is (a) More than the permissible stress (b) Less than the permissible stress (c) Equal to the permissible stress (d) All the above.

Last Answer : (a) More than the permissible stress

Description : In a singly reinforced beam, the effective depth is measured form the compression edge to the (a) Tensile edge (b) Centre of tensile reinforcement (c) Neutral axis of the beam (d) All of the above

Last Answer : (b) Centre of tensile reinforcement

Description : In a simply supported reinforced concrete beam, the reinforcement is placed. (a) Above the neutral axis (b) Below the neutral axis (c) At the neutral axis (d) None of these

Last Answer : (b) Below the neutral axis

Description : Pick up the correct statement from the following:  (A) The bending stress in a section is zero at its neutral axis and maximum at the outer fibres  (B) The shear stress is zero at the outer ... (C) The bending stress at the outer fibres, is known as principal stress  (D) All the above 

Last Answer : (D) All the above 

Description : A doubly reinforced section is used (a) When the members are subjected to alternate external loads and the bending moment in the sections reverses. (b) When the member are subjected to loading eccentric in ... . (c) When the members are subjected to accidental lateral loads . (d) All of the above

Last Answer : (d) All of the above

Description : Pick up the correct statement from the following:  (A) In a loaded beam, the moment at which the first yield occurs is called yield moment (B) In a loaded beam, the moment at which the ... beam, the neutral axis divides the section in two sections of  equal area  (D) All the above 

Last Answer : (D) All the above 

Description : Which of the following sections are preferable for designing a member [ A ] under reinforced sections [ B ] over reinforced sections [ C ] both (a) and (b) [ D ] balanced sections

Last Answer : [ A ] under reinforced sections

Description : Which of the following sections are preferable for designing a member [ A ] under reinforced sections [ B ] over reinforced sections [ C ] both (a) and (b) [ D ] balanced sections

Last Answer : [ A ] under reinforced sections

Description : In a beam section, if the steel reinforcement is of such a magnitude that the permissible stresses in concrete and steel are developed simultaneously, the section is. (a) Balanced section (b) Economical section (c) Critical section (d) All the above

Last Answer : (d) All the above

Description : If the modular ratio is , steel ratio is and overall depth of a beam is , the depth of the critical neutral axis of the beam, is (A) [m/(m - r)] d (B) [m/(m + r)] d (C) [(m + r)/m] d (D) [(r - m)/m] d

Last Answer : Answer: Option B

Description : What is the shear stress acting along the neutral axis of triangular beam section, with base 60 mm and height 150 mm, when shear force of 30 kN acts? a. 15.36 N/mm2 b. 10.6 N/mm2 c. 8.88 N/mm2 d. Insufficient data

Last Answer : c. 8.88 N/mm2

Description : If a concrete column 200 200 mm in cross-section is reinforced with four steel bars of 1200  mm2  total cross-sectional area. Calculate the safe load for the column if permissible stress in  concrete is 5 N/mm2 ... 15 Ec (A) 264 MN  (B) 274 MN  (C) 284 MN  (D) 294 MN 

Last Answer : (C) 284 MN