If the depth of actual neutral axis is greater than the depth of critical neutral axis, then
[ A ] Concrete attains its permissible stress earlier
[ B ] Steel attains its permissible stress earlier
[ C ] Both concrete and steel reaches its permissible stresses simultaneously
[ D ] None of the above

1 Answer

Answer :

[ A ] Concrete attains its permissible stress earlier

Related questions

Description : If the depth of actual neutral axis of a doubly reinforced beam (A) Is greater than the depth of critical neutral axis, the concrete attains its maximum stress earlier (B) Is less ... critical neutral axis; the concrete and steel attain their maximum stresses simultaneously (D) All the above

Last Answer : Answer: Option D

Description : The section of a reinforced beam where most distant concrete fibre in compression and tension in steel attains permissible stresses simultaneously, is called (A) Balanced section B) Economic section (C) Critical section (D) All the above

Last Answer : Answer: Option D

Description : The section of a reinforced beam where most distant concrete fiber in compression and tension in steel attains permissible stresses simultaneously is called (i)Balanced section (ii)Economic section (iii)Critical section [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ D ] i, ii and iii

Description : In a singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called (A) Under-reinforced section (B) Over reinforced section (C) Economic section (D) Critical section

Last Answer : Answer: Option B

Description : In a singly reinforced beam, if the permissible stress in steel reaches earlier than that of concrete, the beam section as called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ A ] Under reinforced section

Description : In a Singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ B ] Over reinforced section

Description : Regarding the working stress design of under reinforced concrete section, (a) The neutral axis depth will be greater than that of a balanced section. (b) The stress in steel intension will reach ... on the tension side is also be considered for calculating the moment of resistance of the section.

Last Answer : both b&c

Description : If the permissible stress in steel in tension is 140 N/mm², then the depth of neutral axis for a singly reinforced rectangular balanced section will be (A) 0.35 d (B) 0.40 d (C) 0.45 d (D) Dependent on grade of concrete also

Last Answer : Answer: Option B

Description : A singly reinforced beam has breadth b, effective depth d, depth of neutral axis n and critical neutral axis n1. If fc and ft are permissible compressive and tensile stresses, the moment to resistance of the beam, is (A) bn (fc ... (B) Atft (d - n/3) (C) ½ n1 (1 - n1/3) cbd² (D) All the above

Last Answer : Answer: Option D

Description : In general in the design of a section by limit method, it is assumed that [ A ] the stress in steel to reach its yield limit before concrete failure [ B ] the stress in concrete to ... in both concrete and steel reach their permissible values simultaneously [ D ] none of the above are correct

Last Answer : [ A ] the stress in steel to reach its yield limit before concrete failure

Description : In general in the design of a section by limit method, it is assumed that [ A ] the stress in steel to reach its yield limit before concrete failure [ B ] the stress in concrete to ... in both concrete and steel reach their permissible values simultaneously [ D ] none of the above are correct

Last Answer : [ A ] the stress in steel to reach its yield limit before concrete failure

Description : In a beam section, if the steel reinforcement is of such a magnitude that the permissible stresses in concrete and steel are developed simultaneously, the section is. (a) Balanced section (b) Economical section (c) Critical section (d) All the above

Last Answer : (d) All the above

Description : In a singly reinforced beam, if the stress in concrete reaches its allowable limit later than the steel reaches, its permissible value, the beam section is said to be (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (b) Over-reinforced section

Description : The section in which concrete is not fully stressed to its permissible value when stress in steel reaches its maximum value is (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (a) Under-reinforced section

Description : The stresses developed in concrete and steel in reinforced concrete beam 25 cm width and 70 cm effective depth, are 62.5 kg/cm2 and 250 kg/cm2 respectively. If m = 15, the depth of its neutral axis is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : If the depth of actual neutral axis in a beam is more than the depth of critical neutral axis, then the beam is called (A) Balanced beam (B) Under-reinforced beam (C) Over-reinforced beam (D) None of the above

Last Answer : Option C

Description : If permissible working stresses in steel and concrete are respectively 1400 kg/cm2 and 80 kg/cm2 and modular ratio is 18, in a beam reinforced in tension side and of width 30 cm and having effective depth 46 cm, the lever arms of the section, is (A) 37 cm (B) 38 cm (C) 39 cm (D) 40 cm

Last Answer : Answer: Option D

Description : A reinforced concrete beam will crack if tensile stress set up in the concrete below the neutral axis is (a) More than the permissible stress (b) Less than the permissible stress (c) Equal to the permissible stress (d) All the above.

Last Answer : (a) More than the permissible stress

Description : The depth of neutral axis for a balanced section is --------- the depth of critical neutral axis [ A ] equal [ B ] always greater than [ C ] always less than [ D ] may be sometimes greater than

Last Answer : [ A ] equal

Description : The depth of neutral axis for over reinforced section is ----------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ B ] Greater than

Description : The depth of neutral axis for under reinforced section is --------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ C ] Less than

Description : If the modular ratio is , steel ratio is and overall depth of a beam is , the depth of the critical neutral axis of the beam, is (A) [m/(m - r)] d (B) [m/(m + r)] d (C) [(m + r)/m] d (D) [(r - m)/m] d

Last Answer : Answer: Option B

Description : In limit state design of concrete for flexure, the area of stress block is taken as (a) 0.530 fck. Xu (b) 0.446 fck . Xu ( c) 0.420 fck .Xu (d) 0.360 fck . Xu Where fck is characteristic compressive strength of concrete and Xu is the depth of neutral axis from top.

Last Answer : (d) 0.360 fck . Xu

Description : A singly reinforced concrete beam of 25 cm width and 70 cm effective depth is provided with 18.75 cm2 steel. If the modular ratio (m) is 15, the depth of the neutral axis, is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : If is the shear force at a section of an I-joist, having web depth and moment of inertia about its neutral axis, the difference between the maximum and mean shear stresses in the web is, (A) Sd²/8I (B) Sd²/12I (C) Sd²/16I (D) Sd²/24I

Last Answer : (D) Sd²/24I

Description : If the depth of actual axis in a beam is more than the depth of critical axis, then the beam is called (a) Over reinforced beam (b) Under-reinforced beam (c) Balanced beam (d) Deep beam

Last Answer : (a) Over reinforced beam

Description : A short column 20 cm 20 cm in section is reinforced with 4 bars whose area of cross section is 20 sq. cm. If permissible compressive stresses in concrete and steel are 40 kg/cm2 and 300 kg/cm2 , the Safe load on ... should not exceed (A) 4120 kg (B) 41,200 kg (C) 412,000 kg (D) None of these

Last Answer : Answer: Option B

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : The actual neutral axis of n under reinforced section is above the critical neutral axis of a balanced section (a) Correct (b) Incorrect (c) Not known (d) None of these

Last Answer : (a) Correct

Description : When shear stress exceeds the permissible limit in a slab, then it is reduced by (A) Increasing the depth (B) Providing shear reinforcement (C) Using high strength steel (D) Using thinner bars but more in number

Last Answer : Answer: Option A

Description : The critical combination of stresses for corner region in cement concrete roads is (A) Load stress + warping stress frictional stress (B) Load stress + warping stress + frictional stress (C) Load stress + warping stress (D) Load stress + frictional stress

Last Answer : Answer: Option C

Description : If the bond stress developed in a reinforced concrete beam is more than permissible value, it can be brought down by. (a) Increasing the depth of beam (b) Increasing the number of bars. (c) Decreasing the diameter of the bars (d) All of these

Last Answer : (d) All of these

Description : In a doubly-reinforced beam if and is the effective depth and is depth of critical neutral axis, the following relationship holds good (A) mc/t = n/(d - n) (B) (m + c)/t = n/(d + n) (C) (t + c)/n = (d + n)/n D) mc/t = (d - n)/t

Last Answer : Answer: Option A

Description : Two stones of different masses are dropped simultaneously from the top of a building – (1) Smaller stone reaches the ground earlier (2) Larger stone reaches the ground earlier (3) Both the stones reach the ground at the same time (4) Depends on the composition of the stone

Last Answer : (3) Both the stones reach the ground at the same time Explanation: Both stones at the same Lime. The initial speed is 0 for both stones, and the only acceleration working in that system would be g ... way across the air. The shape of the falling object will decide the force needed to open that way.

Description : Two stones of different masses are dropped simultaneously from the top of a building (1) Smaller stone reaches the ground earlier (2) Larger stone reaches the ground earlier (3) Both the stones reach the ground at the same time (4) Depends on the composition of the stone

Last Answer : Both the stones reach the ground at the same time

Description : The maximum compressive stress at the top of a beam is 1600 kg/cm2 and the corresponding tensile stress at its bottom is 400 kg/cm2 . If the depth of the beam is 10 cm, the neutral axis from the top, is (A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm

Last Answer : (D) 8 cm

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : The longitudinal shearing stresses acting on the surface between the steel and concrete are called. (a) Bond stress (b) Tensile stresses (c) Compressive stresses (d) None of these

Last Answer : (a) Bond stress

Description : The section of the beam having greater width at the top in comparison to the width below neutral axis is known as. (a) Critical section (b) T-section (c) L-section (d) None of these

Last Answer : (b) T-section

Description : As the percentage of steel increases (A) Depth of neutral axis decreases (B) Depth of neutral axis increases (C) Lever arm increases (D) Lever arm decreases

Last Answer : Answer: Option B

Description : As the percentage of steel in a beam increases, the depth of neutral axis (a) Increases (b) Decreases (c) Equal to (d) None of these

Last Answer : (a) Increases

Description : As the percentage of steel increases [ A ] Depth of neutral axis decreases [ B ] Depth of neutral axis increases [ C ] Lever arm increases [ D ] None of the above are correct

Last Answer : [ B ] Depth of neutral axis increases

Description : For a reinforced concrete section, the shape of shear stress diagram is (A) Wholly parabolic (B) Wholly rectangular (C) Parabolic above neutral axis and rectangular below neutral axis (D) Rectangular above neutral axis and parabolic below neutral axis

Last Answer : Answer: Option C

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : In a reinforced concrete beam , the shear stress distribution above the neutral axis following a (a) A straight line (b) Circular curve (c) Parabolic curve (d) All the above

Last Answer : (c) Parabolic curve

Description : If the load on beam is increased, the tensile stress sin the concrete below the neutral axis will (a) Increase (b) Decrease (c) Remain unchanged (d) None of these

Last Answer : (a) Increase

Description : If a concrete column 200 200 mm in cross-section is reinforced with four steel bars of 1200  mm2  total cross-sectional area. Calculate the safe load for the column if permissible stress in  concrete is 5 N/mm2 ... 15 Ec (A) 264 MN  (B) 274 MN  (C) 284 MN  (D) 294 MN 

Last Answer : (C) 284 MN 

Description : In doubly reinforced rectangular beam, the allowatte stress in compression steel is___________the permissible stross intension insteel. (a) Greater than (b) Less than (c) Equal to (d) All of these

Last Answer : (b) Less than