The specific heat of air increases with increase in  (a) temperature  (b) pressure  (c) both pressure and temperature  (d) variation of its constituents  (e) air flow

1 Answer

Answer :

Answer : a

Related questions

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : Specific heat of air at constant pressure is equal to  (a) 0.17  (b) 0.21  (c) 0.24  (d) 1.0  (e) 1.41

Last Answer : Answer : c

Description : Which of the following is not the intensive property  (a) pressure  (b) temperature  (c) density  (d) heat  (e) specific volume.

Last Answer : Answer : d

Description : Which of the following quantities is not the property of the system  (a) pressure  (b) temperature  (c) specific volume  (d) heat  (e) density.

Last Answer : Answer : d

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : Utilizing the answer to the previous problem, estimate the overall or average increase in temperature ( ΔT) of the concrete roof from the energy absorbed from the sun during a12hour day. Assume that all of the radiation absorbed goes into ... °C  b. 8.9°C  c. 9.9°C  d. 10.9°C formula: ΔQ = m c ΔT

Last Answer : 7.9 °C

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The specific heat at constant volume is  A. the amount of heat required to raise the temperature of unit mass of gas through one degree, at constant pressure  B. the amount of heat required to raise ... to raise the temperature of 1 kg of water through one degree  D. any one of the above

Last Answer : Answer: B

Description : The amount of heat required to raise the temperature of the unit mass of gas through one degree at constant volume, is called  A.specific heat at constant volume  B.specific heat at constant pressure  C.kilo Joule  D.none of these

Last Answer : Answer: A

Description : _____ is that property of a substance which remains constant if no heat enters or leaves the substance, while it does work or alters its volume, but which increases or diminishes should a small amount of heat enter or leave.  a. Entrophy  b. Enthalpy  c. Specific Heat  d. None of the above

Last Answer : Entrophy

Description : On a day when the partial pressure of water vapor remains constant, what happens as the temperature rises?  a. the relative humidity increases  b. the relative humidity decreases  c. the relative humidity remains constant  d. the air would eventually become saturated

Last Answer : the relative humidity decreases

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : As we heat a gas at constant pressure, its volume  a. increases  b. decreases  c. stays the same  d. none of the above

Last Answer : increases

Description : What refers to the heat needed to change the temperature of the substances without changing its phases?  a. Latent heat  b. Sensible heat  c. Specific heat  d. entropy

Last Answer : Sensible heat

Description : The ______ of a substance is the amount of heat that must be added or removed from a unit mass of the substance to change its temperature by one degree.  A. Latent heat of fusion  B. Molar heat  C. Specific heat capacity  D. Specific heat

Last Answer : Specific heat capacity

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : When a solid melts,  a. the temperature of the substance increases.  b. the temperature of the substance decreases.  c. heat leaves the substance.  d. heat enters the substance.

Last Answer : heat enters the substance.

Description : Is the force of gravity on unit volume?  a. Specific Weight  b. Specific Heat  c. Specific Pressure  d. Specific Volume

Last Answer : Specific Weight

Description : Sum of the internal energy of a substance and the product of pressure and volume.  a. Specific Heat  b. Specific Gravity  c. Isolated System  d. Enthalpy

Last Answer : Enthalpy

Description : A unit of pressure used in high vacuum technology, which is equal to 1mmhg.  a. specific heat  b. isometric  c. isobaric  d. torr

Last Answer : torr

Description : From the steam table, determine the average constant pressure specific heat (c) of steam at 10 kPa and45.8 ˚C  A.1.79 kJ/ kg-˚C  B.10.28 kJ/ kg-˚C  C.30.57 kJ/ kg-˚C  D. 100.1 kJ/ kg-˚C Formula: h = c T ∆ ∆ From the steam table At 47.7 ˚C h= 2588.1 kJ/ kg At 43.8 ˚C h= 2581.1 kJ/ kg

Last Answer : 1.79 kJ/ kg-˚C

Description : What predicts the approximate molar specific heat at high temperatures from the atomic weight?  A. Third law of thermodynamics  B. Law of Dulong and Petit  C. Mollier diagram  D. Pressure-enthalpy diagram

Last Answer : Law of Dulong and Petit

Description : The value of specific heat at constant pressure (cp) is __________ that of at constant volume (cv).  A. less than  B. equal to  C. more than

Last Answer : Answer: C

Description : The ratio of specific heat at constant pressure (Cp) and specific heat at constant volume (cv) is  A. equal to one  B. less than one  C. greater than one  D. none of these

Last Answer : Answer: C

Description : The heat per unit mass per degree change in temperature  a. specific heat  b. isometric  c. conservation of energy  d. none of the above

Last Answer : specific heat

Description : Amount of heat needed to rate the temperature of a substance by 1°C  a. Heat Exchange  b. Heat Engine  c. Specific Heat  d. None of the above

Last Answer : Specific Heat

Description : Water (specific heat cv= 4.2 kJ/ kg ∙ K ) is being heated by a 1500 W h eater. What is the rate of change in temperature of 1kg of the water?  A. 0.043 K/s  B. 0.179 K/s  C. 0.357 K/s  D. 1.50 K/s Formula: Q = mcv ( T)

Last Answer : 0.179 K/s

Description : Heat which causes a change in temperature of a substance.  a. Latent heat  b. Sensible heat  c. Specific heat  d. Heat of Fusion

Last Answer : Sensible heat

Description : The heat Q per unit mass per degree change in temperature that must be supplied or removed to change the temperature of a substance.  a. Specific Heat Capacity  b. Latent Heat  c. Heat of Transformation  d. Internal Heat

Last Answer : Specific Heat Capacity

Description : What is defined as the energy required to raise the temperature of a unit mass of a substance by one degree?  A. Latent heat of fusion  B. Molar heat  C. Specific heat capacity  D. Specific heat

Last Answer : Specific heat

Description : What refers to the amount of heat needed to raise the temperature of an object by one degree Celsius or 1K?  A. Heat capacity  B. Specific heat  C. Latent heat  D. Molar heat

Last Answer : Heat capacity

Description : In a free expansion process  (a) work done is zero  (b) heat transfer is zero  (c) both (a) and (b) above  (d) work done is zero but heat increases  (e) work done is zero but heat decreases.

Last Answer : Answer : c

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : The energy of molecular motion appears as  (a) heat  (b) potential energy  (c) surface tension  (d) friction  (e) increase in pressure.

Last Answer : Answer : a

Description : Is a steady flow process at total constant pressure through a control volume for which there is no heat?  a. Adiabatic Saturation Process  b. Dew point  c. Adiabatic Ratio  d. None of the above

Last Answer : Adiabatic Saturation Process

Description : The energy that flows from higher temperature object to a lower temperature object because of the difference in temperature is called  a. heat  b. temperature  c. thermodynamics cycle  d. energy flow

Last Answer : heat

Description : Addition of heat at constant pressure to a gas results in  (a) raising its temperature  (b) raising its pressure  (c) raising its volume  (d) raising its temperature and doing external work  (e) doing external work.

Last Answer : Answer : d

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : What is constant for a substance that is considered “incompressible”?  A. Specific volume of density  B. Pressure  C. Temperature  D. All of the above

Last Answer : Specific volume of density

Description : The “equation of state” refers to any equation that relates the ______ of the substance.  A. Pressure and temperature  B. Pressure, temperature and specific weight  C. Temperature and specific weight  D. Pressure, temperature and specific volume

Last Answer : Pressure, temperature and specific volume

Description : In a Carnot cycle, heat is transferred at  (a) constant pressure  (b) constant volume  (c) constant temperature  (d) constant enthaply  (e) any one of the above.

Last Answer : Answer : c

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : Entropy change depends on  (a) heat transfer  (b) mass transfer  (c) change of temperature  (d) thermodynamic state  (e) change of pressure and volume.

Last Answer : Answer : a

Description : Change in enthalpy of a system is the heat supplied at  (a) constant pressure  (b) constant temperature  (c) constant volume  (d) constant entropy  (e) N.T.P. condition.

Last Answer : Answer : a

Description : Calorie is a measure of  (a) specific heat  (b) quantity of heat  (c) thermal capacity  (d)entropy  (e) work.

Last Answer : Answer : b