According to Avogadro’s law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific weight  (c) occupies volume inversely proportional to its molecular weight  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

1 Answer

Answer :

Answer : e

Related questions

Description : According to Avogadro’s law, the density of any two gases is __________ their molecular masses, if the gases are at the same temperature and pressure.  A. equal to  B. directly proportional to  C. inversely proportional to

Last Answer : Answer: B

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law

Description : An ideal gas as compared to a real gas at very high pressure occupies  (a) more volume  (b) less volume  (c) same volume  (d) unpredictable behaviour  (e) no such correlation.

Last Answer : Answer : a

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : The basis for measuring thermodynamic property of temperature is given by  (a) zeroth law of thermodynamics  (b) first law of thermodynamics  (c) second law of thermodynamics  (d) third law of thermodynamics  (e) Avogadro’s hypothesis.

Last Answer : Answer : a

Description : According to Gay-Lussac law for a perfect gas, the absolute pressure of given mass varies directly as  (a) temperature  (b) absolute  (c) absolute temperature, if volume is kept constant ... , if temperature is kept constant  (e) remains constant,if volume and temperature are kept constant.

Last Answer : Answer : c

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : According to Gay-Lussac law, the absolute pressure of a given mass of a perfect gas varies __________ as its absolute temperature, when the volume remains constant.  A. directly  B. indirectly

Last Answer : Answer: A

Description : “The total volume of a mixture of non-reacting gases is equal to the sum of the partial volumes.” This statement is known as ______.  A. Law of Dulong and Petit  B. Maxwell-Boltzmann law  C. Amagat’s law  D. Avogadro’s law

Last Answer : Amagat’s law

Description : To convert volumetric analysis to gravimetric analysis, the relative volume of each constituent of the flue gases is  (a) divided by its molecular weight  (b) multiplied by its molecular weight  (c) ... by its density  (d) multiplied by its specific weight  (e) divided by its specific weight.

Last Answer : Answer : b

Description : What states that for a confined fluid, the pressure at a point has the same magnitude in all directions?  A. Avogadro’s Law  B. Amagat Law  C. Pascal’s Law  D. Bernoulli’s Theorem

Last Answer : Pascal’s Law

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : According to Dalton's law, the total pres sure of the mixture of gases is equal to  (a) greater of the partial pressures of all  (b) average of the partial pressures of all  (c) sum ... all  (d) sum of the partial pressures of all divided by average molecular weight  (e) atmospheric pressure.

Last Answer : Answer : c

Description : The acceleration of a particular body is directly proportional to the resultant force acting on it & inversely proportional to its mass.  a. Pascal's Law  b. Joule's Law  c. Newton's Law  d. None of the above

Last Answer : Newton's Law

Description : The same volume of all gases would represent their  (a) densities  (b) specific weights  (c) molecular weights  (d) gas characteristic constants  (e) specific gravities.

Last Answer : Answer : c

Description : Considering one mole of any gas, the equation of state of ideal gases is simply the ______ law.  A. Gay-Lussac law  B. Dulong and Petit  C. Avogadro’s  D. Henry’s

Last Answer : Avogadro’s

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : What gas thermometer is based on the principle that at low pressure, the temperature of a gas is proportional to its pressure at constant volume?  A. Constant-pressure gas thermometer  B. Isobaric gas thermometer  C. Isometric gas thermometer  D. Constant-volume gas thermometer

Last Answer : Constant-volume gas thermometer

Description : A cylinder contains oxygen at a pressure of 10 atm and a temperature of 300 K. The volume of the cylinder is 10 liters. What is the mass of the oxygen in grams? Molecular weight (MW) of oxygen is 32 g/mole?  a. 125.02  b. 130.08  c. 135.05  d. 120.04

Last Answer : 130.08 {(10atm)(10)(32)/(0.0821) (300K)}

Description : Is the amount of a substance that contains Avogadro’s number of atoms/molecules.  a. mass  b. matter  c. gram-mole  d. volume

Last Answer : gram-mole

Description : According to which law, all perfect gases change in volume by l/273th of their original volume at 0°C for every 1°C change in temperature when pressure remains constant  (a) Joule’s law  (b) Boyle’s law  (c) Regnault’s law  (d) Gay-Lussac law  (e) Charles’ law.

Last Answer : Answer : e

Description : The hyperbolic process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : An isothermal process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : The “equation of state” refers to any equation that relates the ______ of the substance.  A. Pressure and temperature  B. Pressure, temperature and specific weight  C. Temperature and specific weight  D. Pressure, temperature and specific volume

Last Answer : Pressure, temperature and specific volume

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The specific heat at constant volume is  A. the amount of heat required to raise the temperature of unit mass of gas through one degree, at constant pressure  B. the amount of heat required to raise ... to raise the temperature of 1 kg of water through one degree  D. any one of the above

Last Answer : Answer: B

Description : The amount of heat required to raise the temperature of the unit mass of gas through one degree at constant volume, is called  A.specific heat at constant volume  B.specific heat at constant pressure  C.kilo Joule  D.none of these

Last Answer : Answer: A

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : Oxygen at 15ºC and 10.3 Mpa gauge pressure occupies 600L. What is the occupied by the oxygen at 8.28 Mpa gauge pressure and 35ºC?  a. 789.32 L  b. 796.32 L  c. 699 L  d. 588 L V2= P1V1/T1P2

Last Answer : 796.32 L

Description : Molecular volume of any perfect gas at 600 x 103 N/m2 and 27°C will be  (a) 4.17m3/kgmol  (b) 400 m3/kg mol  (c) 0.15 m3/kg mol  (d) 41.7 m3/kg mol  (e) 417m3/kgmol.

Last Answer : Answer : a

Description : Which of the following is not the intensive property  (a) pressure  (b) temperature  (c) density  (d) heat  (e) specific volume.

Last Answer : Answer : d

Description : Which of the following quantities is not the property of the system  (a) pressure  (b) temperature  (c) specific volume  (d) heat  (e) density.

Last Answer : Answer : d

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : Is the force of gravity on unit volume?  a. Specific Weight  b. Specific Heat  c. Specific Pressure  d. Specific Volume

Last Answer : Specific Weight

Description : The energy associated with individual molecules in a gas, liquid or solid.  a. Specific Energy  b. Molecular Energy  c. Internal Energy  d. Phase Energy

Last Answer : Internal Energy

Description : What is constant for a substance that is considered “incompressible”?  A. Specific volume of density  B. Pressure  C. Temperature  D. All of the above

Last Answer : Specific volume of density