A beam curved in plan is designed for
(A) Bending moment and shear
(B) Bending moment and torsion
(C) Shear and torsion
(D) Bending moment, shear and torsion

1 Answer

Answer :

Answer: Option D

Related questions

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : The deep beams are designed for (a) Shear force only (b) Bending moment only (c) Both S.F & B.M (d) Bearing

Last Answer : (b) Bending moment only

Description : If the shear force along a section of a beam is zero, the bending moment at the section is  (A) Zero  (B) Maximum  (C) Minimum  (D) Average of maximum-minimum 

Last Answer : (B) Maximum 

Description : A diagram which shows the variations of the axial load for all sections of the span of a beam, is called (A) Bending moment diagram (B) Shear force diagram (C) Thrust diagram (D) Stress diagram

Last Answer : Answer: Option C

Description : In a beam the local bond stress Sb, is equal to (A) Shear force/(Leaver arm Total perimeter of reinforcement) (B) Total perimeter of reinforcement/(Leaver arm Shear force) (C) ... force Total perimeter of reinforcement) (D) Leaver arm/(Bending moment Total perimeter of reinforcement)

Last Answer : Answer: Option A

Description : Pick up the incorrect statement from the following: Tensile reinforcement bars of a rectangular beam (A) Are curtailed if not required to resist the bending moment (B) Are bent up at suitable ... to serve as shear reinforcement (D) Are maintained at bottom to provide at least local bond stress

Last Answer : Answer: Option C

Description : For a certain set of external loads, concordant profile in a prestressed beam represents to some scale the (a) Influence line diagram (b) Shear force diagram (c) Bending moment diagram (d) Williot-Mohr diagram

Last Answer : (c) Bending moment diagram

Description : Pick up the correct statement from the following:  (A) Mcg = M M 2  + r2 ) where letters carry their usual meanings  (B) Tcp = m 2  + T2 )where ... maximum shear stress caused by the combined bending and torsion, is called equivalent  torque  (D) All the above 

Last Answer : (D) All the above 

Description : In a ring beam subjected to uniformly distributed load (i) Shear force at mid span is zero (ii) Shear force at mid span is maximum (iii) Torsion at mid span is zero (iv) Torsion at mid span is maximum The correct answer ... and (iii) (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv)

Last Answer : Option A

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : If the positive and negative shear force diagram areas are not equal, it can be concluded that a.shear force diagram has been wrongly drawn b.there is at least one couple acting on the beam c.107 dynes d.there are at least two maxima for bending moment e.bending moment does not change sign

Last Answer : b. there is at least one couple acting on the beam

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : Under sagging bending moment, the uppermost fiber of the beam is in (a) Shear (b) Compression (c) Tension (d) None)

Last Answer : (b) Compression

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : When the helical torsion spring is subjected to torque, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (C) Bending stress

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Parallel fillet welds are under  Shear and bending stresses  Compressive and torsion shear stresses  Tensile and compressive stresses  None

Last Answer :  None

Description : When a close-coiled helical spring is subjected to an axial load, it is said to be under. (a) Bending (b) Shear (c) Torsion (d) Crushing

Last Answer : (c) Torsion

Description : Which of the following is incorrect? a. In torsion equation, we use mean torque b. In torsion equation, we use maximum torque c. Many shafts are designed under combined bending and torsion load d. Shafts are also designed for torsional rigidity

Last Answer : a. In torsion equation, we use mean torque

Description : Which of the following loading is considered for the design of axles ? (a) Bending moment only (b) Twisting moment only (c) Combined bending moment and torsion (d) Combined action of bending moment, twisting moment and axial thrust

Last Answer : (a) Bending moment only

Description : A member subjected to couple produces rotational motion about its longitudinal axis called as ________ a. torsion b. twisting moment c. both a. and b. d. bending moment

Last Answer : c. both a. and b.

Description : A shaft a. Is always subjected to pure torsion b. Combination of M & T but no end thrust c. Combination of torque & end thrust but no bending moment d. May be subjected to a combination of M, T and end thrust

Last Answer : d. May be subjected to a combination of M, T and end thrust

Description : In combined bending and torsion equivalent bending moment is a. Me = (M^2 + T^2)^1/2 b. Me = ½(M^2 + T^2)^1/2 c. Me = M+(M^2 + T^2)^1/2 d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Last Answer : d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Description : A shaft is said to be in pure torsion if a. Turning moment is applied at one end and other end is free b. Turning force is applied at one end and other end is free c. Two opposite turning moments are applied to the shaft d. Combination of torsional load and bending load is applied to the shaft

Last Answer : c. Two opposite turning moments are applied to the shaft

Description : Pick up the correct statement from the following:  (A) For channels, the shear centre does not coincide its centroid  (B) The point of intersection of the bending axis with the cross section ... shear centre coincides with the centroid of the cross section of the beam  (D) All the above

Last Answer : (D) All the above

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Shear stress is same throughout the beam (C) Deflection is same throughout the beam (D) Bending stress is same at every section along its longitudinal axis

Last Answer : (D) Bending stress is same at every section along its longitudinal axis

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Deflection is same throughout the beam (C) Bending stress is same throughout the beam (D) Shear stress is same throughout the beam

Last Answer : (C) Bending stress is same throughout the beam

Description : The bending stress in a curved beam is A. Zero at the centroidal axis B. Zero at the point other than centroidal axis C. Maximum at the neutral axis D. None of these

Last Answer : B. Zero at the point other than centroidal axis

Description : The bending stress in a curved beam is (A) Zero at the centroidal axis (B) Zero at the point other than centroidal axis (C) Maximum at the neutral axis (D) None of these

Last Answer : (B) Zero at the point other than centroidal axis

Description : A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the  maximum bending stress to maximum shear stress developed in the shaft, is  (A) M/T (B) T/M (C) 2M/T (D) 2T/M

Last Answer : (C) 2M/T

Description :  shaft subjected to a bending moment M and a torque T, experiences  (A) Maximum bending stress = 32M d 3 (B) Maximum shear stress = 16 T d 3 (C) Both (a) and (b)  (D) Neither (a) nor (b)

Last Answer : (C) Both (a) and (b) 

Description : In the slope deflection equations, the deformations are considered to be caused by (i) Bending moment (ii) Shear force (iii) Axial force The correct answer is (A) Only (i) (B) (i) and (ii) (C) (ii) and (iii) (D) (i), (ii) and (iii)

Last Answer : (A) Only (i)

Description : An arch may be subjected to  (A) Shear and axial force  (B) Bending moment and shear force  (C) Bending moment and axial force  (D) Thrust, shear force and bending moment 

Last Answer : (D) Thrust, shear force and bending moment 

Description : Pick up the correct statement from the following: (A) The rate of change of bending moment is equal to rate of shear force (B) The rate of change of shear force is equal to rate of loading (C) Neither (a) nor (b) (D) Both (a) and (b

Last Answer : (D) Both (a) and (b

Description : If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by (A) F = My/I (B) F = M/Z (C) F = dM/dx (D) F Mdx

Last Answer : (C) F = dM/dx

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : In a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at (A) Less loaded column (B) More loaded column (C) A point of the maximum shear force (D) A point of zero shear force

Last Answer : Answer: Option D

Description : The amount of reinforcement for main bars in a slab, is based upon (A) Minimum bending moment (B) Maximum bending moment (C) Maximum shear force (D) Minimum shear force

Last Answer : Answer: Option B

Description : A construction joint is provided where (A) Bending moment is small (B) Shear force is small (C) The member is supported by other member (D) All the above

Last Answer : Answer: Option D

Description : Inc case of prestressed concrete members, the bursting stresses develop at (a) Bond zone (b) Maximum bending moment zone (c ) Maximum shear stress zone (d) Anchorage zone

Last Answer : (d) Anchorage zone

Description : The purlins in roof trusses are placed at the panel points essentially to avoid (a) Axial force in rafter (b) Shear force in rafter (c ) Deflection in rafter (d) Bending moment in rafter

Last Answer : (d) Bending moment in rafter

Description : The amount of reinforcement for main bars in a slab, is based upon (a) Maximum bending moment (b) Minimum bending moment (c) Maximum shear force (d) Minimum shear force

Last Answer : (a) Maximum bending moment

Description : Find the correct statement from the followings. (a) For a cantilever slab, the ratio of span to overall depth should not 12. (b) One way slab which carry uniformly distributed load should be designed to ... be designed to resist a hogging moment at the face of the support. (d) All of the above.

Last Answer : (d) All of the above.

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : Bending moment at any section in a conjugate beam gives in the actual beam (A) Slope (B) Curvature (C) Deflection (D) Bending moment

Last Answer : (C) Deflection

Description : A simply supported beam carries two equal concentrated loads W at distances L/3 from either support. The maximum bending moment (A) WL/3 (B) WL/4 (C) 5WL/4 (D) 3WL/12

Last Answer : (A) WL/3

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8