A construction joint is provided where
(A) Bending moment is small
(B) Shear force is small
(C) The member is supported by other member
(D) All the above

1 Answer

Answer :

Answer: Option D

Related questions

Description : Construction joints are provided (A) Where B.M. and S.F. are small (B) Where the member is supported by other member (C) At 18 m apart in huge structures (D) All the above

Last Answer : (D) All the above

Description : In the slope deflection equations, the deformations are considered to be caused by (i) Bending moment (ii) Shear force (iii) Axial force The correct answer is (A) Only (i) (B) (i) and (ii) (C) (ii) and (iii) (D) (i), (ii) and (iii)

Last Answer : (A) Only (i)

Description : If the shear force along a section of a beam is zero, the bending moment at the section is  (A) Zero  (B) Maximum  (C) Minimum  (D) Average of maximum-minimum 

Last Answer : (B) Maximum 

Description : An arch may be subjected to  (A) Shear and axial force  (B) Bending moment and shear force  (C) Bending moment and axial force  (D) Thrust, shear force and bending moment 

Last Answer : (D) Thrust, shear force and bending moment 

Description : A diagram which shows the variations of the axial load for all sections of the span of a beam, is called (A) Bending moment diagram (B) Shear force diagram (C) Thrust diagram (D) Stress diagram

Last Answer : Answer: Option C

Description : Pick up the correct statement from the following: (A) The rate of change of bending moment is equal to rate of shear force (B) The rate of change of shear force is equal to rate of loading (C) Neither (a) nor (b) (D) Both (a) and (b

Last Answer : (D) Both (a) and (b

Description : If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by (A) F = My/I (B) F = M/Z (C) F = dM/dx (D) F Mdx

Last Answer : (C) F = dM/dx

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : In a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at (A) Less loaded column (B) More loaded column (C) A point of the maximum shear force (D) A point of zero shear force

Last Answer : Answer: Option D

Description : The amount of reinforcement for main bars in a slab, is based upon (A) Minimum bending moment (B) Maximum bending moment (C) Maximum shear force (D) Minimum shear force

Last Answer : Answer: Option B

Description : In a beam the local bond stress Sb, is equal to (A) Shear force/(Leaver arm Total perimeter of reinforcement) (B) Total perimeter of reinforcement/(Leaver arm Shear force) (C) ... force Total perimeter of reinforcement) (D) Leaver arm/(Bending moment Total perimeter of reinforcement)

Last Answer : Answer: Option A

Description : For a certain set of external loads, concordant profile in a prestressed beam represents to some scale the (a) Influence line diagram (b) Shear force diagram (c) Bending moment diagram (d) Williot-Mohr diagram

Last Answer : (c) Bending moment diagram

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : The purlins in roof trusses are placed at the panel points essentially to avoid (a) Axial force in rafter (b) Shear force in rafter (c ) Deflection in rafter (d) Bending moment in rafter

Last Answer : (d) Bending moment in rafter

Description : The amount of reinforcement for main bars in a slab, is based upon (a) Maximum bending moment (b) Minimum bending moment (c) Maximum shear force (d) Minimum shear force

Last Answer : (a) Maximum bending moment

Description : The deep beams are designed for (a) Shear force only (b) Bending moment only (c) Both S.F & B.M (d) Bearing

Last Answer : (b) Bending moment only

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : When a series of wheel loads crosses a simply supported girder, the maximum bending moment under any given wheel load occurs when (A) The centre of gravity of the load system is midway between the centre of ... the centre of span and the centre of gravity of the load system (D) None of the above

Last Answer : (B) The centre of span is midway between the centre of gravity of the load system and the wheel load under consideration

Description : The maximum bending moment due to a train of wheel loads on a simply supported girder (A) Always occurs at centre of span (B) Always occurs under a wheel load (C) Never occurs under a wheel load (D) None of the above

Last Answer : (B) Always occurs under a wheel load

Description : A simply supported beam carries two equal concentrated loads W at distances L/3 from either support. The maximum bending moment (A) WL/3 (B) WL/4 (C) 5WL/4 (D) 3WL/12

Last Answer : (A) WL/3

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : For a simply supported beam with a central load, the bending moment is  (A) Least at the centre  (B) Least at the supports  (C) Maximum at the supports  (D) Maximum at the centre

Last Answer : (D) Maximum at the centre

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : The maximum bending moment due to a moving load on a simply supported beam, occurs (A) At the mid span (B) At the supports (C) Under the load (D) Anywhere on the beam

Last Answer : (C) Under the load

Description : If the sides of a slab simply supported on edges and spanning in two directions are equal, the maximum bending moment is multiplied by (A) 0.2 (B) 0.3 (C) 0.4 (D) 0.5

Last Answer : Answer: Option D

Description : If the sides o a slab simply supported on its edges and spanning in two way are equal, then the maximum bending moment is multiplied by. (a) 0.25 (b) 0.50 (c) 0.75 (d) 0.85

Last Answer : (b) 0.50

Description : If the positive and negative shear force diagram areas are not equal, it can be concluded that a.shear force diagram has been wrongly drawn b.there is at least one couple acting on the beam c.107 dynes d.there are at least two maxima for bending moment e.bending moment does not change sign

Last Answer : b. there is at least one couple acting on the beam

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : Deflection due to shear force as compared to bending moment will be a.equal b.less c.More d.None.

Last Answer : b.less

Description : Relation between bending moment and shear force is (a) dM/dx = -Vx (b) dM/dx = ±Vx (c) dM/dx = Vx (d) None

Last Answer : (c) dM/dx = Vx

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : Point of contra-flexure is also called (a) Point of maximum Shear force (b) Point of maximum Bending moment (c) Point of inflexion (d) Fixed end

Last Answer : (c) Point of inflexion

Description : Point of contra-flexure is a (a) Point where Shear force is maximum (b) Point where Bending moment is maximum (c) Point where Bending moment is zero (d) Point where Bending moment=0 but also changes sign from positive to negative

Last Answer : (d) Point where Bending moment=0 but also changes sign from positive to negative

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The rate of change of bending moment is equal to (a) Shear force (b) Slope (c) Deflection (d) None of these

Last Answer : (a) Shear force

Description : Define shear force and bending moment.

Last Answer : Shear force at a section defend as algebraic sum of taken only one side of section Shear force at let section vertical of this (+ve) vertical down (-ve) Shear force at section of right Section vertical down is (+ve) and vertical up is (-ve)

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 6 m effective span is 10 kg/cm2 , the share stirrups are provided for a distance from either end where, is (A) 50 cm (B) 100 cm (C) 150 cm (D) 200 cm

Last Answer : Answer: Option C

Description : A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the  maximum bending stress to maximum shear stress developed in the shaft, is  (A) M/T (B) T/M (C) 2M/T (D) 2T/M

Last Answer : (C) 2M/T

Description :  shaft subjected to a bending moment M and a torque T, experiences  (A) Maximum bending stress = 32M d 3 (B) Maximum shear stress = 16 T d 3 (C) Both (a) and (b)  (D) Neither (a) nor (b)

Last Answer : (C) Both (a) and (b) 

Description : Pick up the incorrect statement from the following: Tensile reinforcement bars of a rectangular beam (A) Are curtailed if not required to resist the bending moment (B) Are bent up at suitable ... to serve as shear reinforcement (D) Are maintained at bottom to provide at least local bond stress

Last Answer : Answer: Option C

Description : A beam curved in plan is designed for (A) Bending moment and shear (B) Bending moment and torsion (C) Shear and torsion (D) Bending moment, shear and torsion

Last Answer : Answer: Option D

Description : Inc case of prestressed concrete members, the bursting stresses develop at (a) Bond zone (b) Maximum bending moment zone (c ) Maximum shear stress zone (d) Anchorage zone

Last Answer : (d) Anchorage zone

Description : The expression EI d4y/dx4 at a section of a member represents a. Shearing force b. rate of loading c. bending moment d.slope.

Last Answer : b. rate of loading

Description : .The expression EI d3y/dx3 at a section of a member represents a.Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : a.Shearing force

Description : The expression EI d2y/dx2 at a section of a member represents a. Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : c.bending moment