If Z and I are the section modulus and moment of inertia of the section, the shear force F and
bending moment M at a section are related by
(A) F = My/I
(B) F = M/Z
(C) F = dM/dx
(D) F Mdx

1 Answer

Answer :

(C) F = dM/dx

Related questions

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The maximum stress in the beam, subjected to a maximum bending moment , is (A) f = (P/A) + (Z/M) ... ) + (M/Z) (C) f = (P/A) + (M/Z) (D) f = (P/A) + (M/6Z)

Last Answer : Answer: Option C

Description : is the pre-stressed force applied to tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The minimum stress on the beam subjected to a maximum bending moment is (A) f = (P/A) - (Z/M) (B) f = (A/P) - (M/Z) (C) f = (P/A) - (M/Z) (D) f = (P/A) - (M/6Z)

Last Answer : Answer: Option C

Description : Relation between bending moment and shear force is (a) dM/dx = -Vx (b) dM/dx = ±Vx (c) dM/dx = Vx (d) None

Last Answer : (c) dM/dx = Vx

Description : Bending stress will be least at the extreme fibres for (a) Maximum area of cross section (b) Maximum moment of inertia (c) Maximum section modulus (d) None

Last Answer : (c) Maximum section modulus

Description : The deep beams are designed for (a) Shear force only (b) Bending moment only (c) Both S.F & B.M (d) Bearing

Last Answer : (b) Bending moment only

Description : The maximum twisting moment a shaft can resist, is the product of the permissible shear stress and (A) Moment of inertia (B) Polar moment of inertia (C) Polar modulus (D) Modulus of rigidly

Last Answer : (C) Polar modulus

Description : If is the shear force at a section of an I-joist, having web depth and moment of inertia about its neutral axis, the difference between the maximum and mean shear stresses in the web is, (A) Sd²/8I (B) Sd²/12I (C) Sd²/16I (D) Sd²/24I

Last Answer : (D) Sd²/24I

Description : The relation between bending moment and UDL is (a) dM/dx=0 (b) dM/dx= –Vx (c) dM/dx= Vx (d) None

Last Answer : c) dM/dx= Vx

Description : The relation between bending moment and concentrated load is (a) dM/dx=0 (b) dM/dx= –Vx (c) dM/dx= Vx (d) None

Last Answer : (c) dM/dx= Vx

Description : If the shear force along a section of a beam is zero, the bending moment at the section is  (A) Zero  (B) Maximum  (C) Minimum  (D) Average of maximum-minimum 

Last Answer : (B) Maximum 

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : Pick up the incorrect statement from the following: The torsional resistance of a shaft is directly  proportional to  (A) Modulus of rigidity  (B) Angle of twist  (C) Reciprocal of the length of the shaft  (D) Moment of inertia of the shaft section 

Last Answer : (D) Moment of inertia of the shaft section 

Description : What is the product of sectional modulus and allowable bending stress called as? a. Moment of inertia b. Moment of rigidity c. Moment of resistance d. Radius of gyration

Last Answer : c. Moment of resistance

Description : Pick up the correct statement from the following:  (A) The moment of inertia is calculated about the axis about which bending takes place  (B) If tensile stress is less than axial ... tensile stress is equal to axial stress, the section experiences compressive stress  (D) All the above 

Last Answer : (D) All the above 

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : In the slope deflection equations, the deformations are considered to be caused by (i) Bending moment (ii) Shear force (iii) Axial force The correct answer is (A) Only (i) (B) (i) and (ii) (C) (ii) and (iii) (D) (i), (ii) and (iii)

Last Answer : (A) Only (i)

Description : An arch may be subjected to  (A) Shear and axial force  (B) Bending moment and shear force  (C) Bending moment and axial force  (D) Thrust, shear force and bending moment 

Last Answer : (D) Thrust, shear force and bending moment 

Description : A diagram which shows the variations of the axial load for all sections of the span of a beam, is called (A) Bending moment diagram (B) Shear force diagram (C) Thrust diagram (D) Stress diagram

Last Answer : Answer: Option C

Description : Pick up the correct statement from the following: (A) The rate of change of bending moment is equal to rate of shear force (B) The rate of change of shear force is equal to rate of loading (C) Neither (a) nor (b) (D) Both (a) and (b

Last Answer : (D) Both (a) and (b

Description : In a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at (A) Less loaded column (B) More loaded column (C) A point of the maximum shear force (D) A point of zero shear force

Last Answer : Answer: Option D

Description : The amount of reinforcement for main bars in a slab, is based upon (A) Minimum bending moment (B) Maximum bending moment (C) Maximum shear force (D) Minimum shear force

Last Answer : Answer: Option B

Description : In a beam the local bond stress Sb, is equal to (A) Shear force/(Leaver arm Total perimeter of reinforcement) (B) Total perimeter of reinforcement/(Leaver arm Shear force) (C) ... force Total perimeter of reinforcement) (D) Leaver arm/(Bending moment Total perimeter of reinforcement)

Last Answer : Answer: Option A

Description : A construction joint is provided where (A) Bending moment is small (B) Shear force is small (C) The member is supported by other member (D) All the above

Last Answer : Answer: Option D

Description : For a certain set of external loads, concordant profile in a prestressed beam represents to some scale the (a) Influence line diagram (b) Shear force diagram (c) Bending moment diagram (d) Williot-Mohr diagram

Last Answer : (c) Bending moment diagram

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : The purlins in roof trusses are placed at the panel points essentially to avoid (a) Axial force in rafter (b) Shear force in rafter (c ) Deflection in rafter (d) Bending moment in rafter

Last Answer : (d) Bending moment in rafter

Description : The amount of reinforcement for main bars in a slab, is based upon (a) Maximum bending moment (b) Minimum bending moment (c) Maximum shear force (d) Minimum shear force

Last Answer : (a) Maximum bending moment

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the  maximum bending stress to maximum shear stress developed in the shaft, is  (A) M/T (B) T/M (C) 2M/T (D) 2T/M

Last Answer : (C) 2M/T

Description :  shaft subjected to a bending moment M and a torque T, experiences  (A) Maximum bending stress = 32M d 3 (B) Maximum shear stress = 16 T d 3 (C) Both (a) and (b)  (D) Neither (a) nor (b)

Last Answer : (C) Both (a) and (b) 

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Shear stress is same throughout the beam (C) Deflection is same throughout the beam (D) Bending stress is same at every section along its longitudinal axis

Last Answer : (D) Bending stress is same at every section along its longitudinal axis

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : Pick up the correct assumption of the theory of simple bending  (A) The value of the Young's modulus is the same in tension as well as in compression  (B) Transverse section of a beam remains ... bending  (C) The material of the beam is homogeneous and isotropic  (D) All the above

Last Answer : (D) All the above

Description : The bending moment is maximum on a section where shearing force  (A) Is maximum  (B) Is minimum  (C) Is equal  (D) Changes sign 

Last Answer : (D) Changes sign 

Description : In a loaded beam, the point of contraflexure occurs at a section where (A) Bending moment is minimum (B) Bending moment is zero or changes sign (C) Bending moment is maximum (D) Shearing force is maximum

Last Answer : Answer: Option B

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : In a shaft shear stress intensity at a point is not (A) Directly proportional to the distance from the axis (B) Inversely proportional to the distance from the axis (C) Inversely proportional to the polar moment of inertia (D) Directly proportional to the applied torque

Last Answer : (B) Inversely proportional to the distance from the axis

Description : If the positive and negative shear force diagram areas are not equal, it can be concluded that a.shear force diagram has been wrongly drawn b.there is at least one couple acting on the beam c.107 dynes d.there are at least two maxima for bending moment e.bending moment does not change sign

Last Answer : b. there is at least one couple acting on the beam

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : Deflection due to shear force as compared to bending moment will be a.equal b.less c.More d.None.

Last Answer : b.less

Description : Point of contra-flexure is also called (a) Point of maximum Shear force (b) Point of maximum Bending moment (c) Point of inflexion (d) Fixed end

Last Answer : (c) Point of inflexion

Description : Point of contra-flexure is a (a) Point where Shear force is maximum (b) Point where Bending moment is maximum (c) Point where Bending moment is zero (d) Point where Bending moment=0 but also changes sign from positive to negative

Last Answer : (d) Point where Bending moment=0 but also changes sign from positive to negative

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The rate of change of bending moment is equal to (a) Shear force (b) Slope (c) Deflection (d) None of these

Last Answer : (a) Shear force

Description : Define shear force and bending moment.

Last Answer : Shear force at a section defend as algebraic sum of taken only one side of section Shear force at let section vertical of this (+ve) vertical down (-ve) Shear force at section of right Section vertical down is (+ve) and vertical up is (-ve)